Prof. Li’s Lab for High-Energy Batteries

Research

  • Alkaline-Metal Ion Batteries

    The alkaline-metal ion batteries operate with very similar reaction mechanism, namely, insertion/extraction of alkaline ions into/from a cathode and the corresponding extraction/insertion of alkaline-metal ions from and into an anode. The life span of the batteries mainly depends on the reversibility of electrodes during cycles. Searching for stable electrodes and understanding the kinetics of alkaline-metal ions and charge compensation in electrodes are crucial for battery performance improvement.

  • Metal-Air Batteries

    Our research is mainly related to Li-, Na- or K-air batteries. The reaction mechanism is dependent on the various discharge products due to their thermodynamic stability. Big challenges faced by such metal-air batteries are the low decomposition efficiency of discharge products, stability of electrolytes and electrodes against oxygen radicals generated in a charging process, and shuttling effect of the dissolved discharge products. How to alleviate or solve these problems and hence improve the battery performance is the focus of our research.

Publications

  • Hengyi Fang, Yaohui Huang, Wei Hu, Zihao Song, Xiangshuai Wei, Jiarun Geng, Zhuoliang Jiang, Heng Qu, Jun Chen, Fujun Li*, Regulating Ion-Dipole Interactions in Weakly Solvating Electrolyte towards Ultra-Low Temperature Sodium-Ion Batteries, Angew. Chem. Int. Ed. 2024, DOI: 10.1002/anie.202400539.

    Hengyi Fang, Yaohui Huang, Wei Hu, Zihao Song, Xiangshuai Wei, Jiarun Geng, Zhuoliang Jiang, Heng Qu, Jun Chen, Fujun Li*, Regulating Ion-Dipole Interactions in Weakly Solvating Electrolyte towards Ultra-Low Temperature Sodium-Ion Batteries, Angew. Chem. Int. Ed. 2024, DOI:10.1002/anie.202400539.

  • Hengyi Fang, Yaohui Huang, Wei Hu, Zihao Song, Xiangshuai Wei, Jiarun Geng, Zhuoliang Jiang, Heng Qu, Jun Chen, Fujun Li*, Regulating Ion-Dipole Interactions in Weakly Solvating Electrolyte towards Ultra-Low Temperature Sodium-Ion Batteries, Angew. Chem. Int. Ed. 2024, DOI: 10.1002/anie.202400539.

    Hengyi Fang, Yaohui Huang, Wei Hu, Zihao Song, Xiangshuai Wei, Jiarun Geng, Zhuoliang Jiang, Heng Qu, Jun Chen, Fujun Li*, Regulating Ion-Dipole Interactions in Weakly Solvating Electrolyte towards Ultra-Low Temperature Sodium-Ion Batteries, Angew. Chem. Int. Ed. 2024, DOI: 10.1002/anie.202400539.

  • Xunzhu Zhou, Yaohui Huang, Bo Wen, Zhuo Yang, Zhiqiang Hao, Lin Li, Shu-Lei Chou, Fujun Li*, Regulation of Anion–Na+ Coordination Chemistry in Electrolyte Solvates for Low-Temperature Sodium-Ion Batteries, PNAS 2024, 121, e2316914121.

    Xunzhu Zhou, Yaohui Huang, Bo Wen, Zhuo Yang, Zhiqiang Hao, Lin Li*, Shu-Lei Chou*, Fujun Li*, Regulation of Anion-Na+ Coordination Chemistry in Electrolyte Solvates for Low-Temperature Sodium-Ion Batteries, PNAS 2024, 121, e2316914121.

  • Xunzhu Zhou, Yaohui Huang, Bo Wen, Zhuo Yang, Zhiqiang Hao, Lin Li, Shu-Lei Chou, Fujun Li*, Regulation of Anion–Na+ Coordination Chemistry in Electrolyte Solvates for Low-Temperature Sodium-Ion Batteries, PNAS 2024, 121, e2316914121.

    Xunzhu Zhou, Yaohui Huang, Bo Wen, Zhuo Yang, Zhiqiang Hao, Lin Li*, Shu-Lei Chou*, Fujun Li*, Regulation of Anion-Na+ Coordination Chemistry in Electrolyte Solvates for Low-Temperature Sodium-Ion Batteries, PNAS 2024, 121, e2316914121.

  • Suning Gao, Zhuo Zhu, Hengyi Fang, Kun Feng, Jun Zhong, Machuan Hou, Yihe Guo, Fei Li, Wei Zhang, Zifeng Ma, Fujun Li*, Regulation of Coordination Chemistry for Ultra-Stable Layered Oxide Cathode Materials of Sodium-Ion Batteries, Adv. Mater. 2024, DOI: 10.1002/adma.202311523.

    Suning Gao, Zhuo Zhu, Hengyi Fang, Kun Feng, Jun Zhong, Machuan Hou, Yihe Guo, Fei Li, Wei Zhang, Zifeng Ma, Fujun Li*, Regulation of Coordination Chemistry for Ultra-Stable Layered Oxide Cathode Materials of Sodium-Ion Batteries, Adv. Mater. 2024, DOI: 10.1002/adma.202311523.

  • Suning Gao, Zhuo Zhu, Hengyi Fang, Kun Feng, Jun Zhong, Machuan Hou, Yihe Guo, Fei Li, Wei Zhang, Zifeng Ma, Fujun Li*, Regulation of Coordination Chemistry for Ultra-Stable Layered Oxide Cathode Materials of Sodium-Ion Batteries, Adv. Mater. 2024, DOI: 10.1002/adma.202311523.

    Suning Gao, Zhuo Zhu, Hengyi Fang, Kun Feng, Jun Zhong, Machuan Hou, Yihe Guo, Fei Li, Wei Zhang, Zifeng Ma, Fujun Li*, Regulation of Coordination Chemistry for Ultra-Stable Layered Oxide Cathode Materials of Sodium-Ion Batteries, Adv. Mater. 2024, DOI: 10.1002/adma.202311523.

  • Tong Zhang, Meng Ren, Yaohui Huang, Fei Li, Weibo Hua, Sylvio Indris, Fujun Li*, Negative Lattice Expansion in an O3-Type Transition-Metal Oxide Cathode for Highly Stable Sodium-Ion Batteries, Angew. Chem. Int. Ed. 2024, DOI: 10.1002/ange.202316949.

    Tong Zhang, Meng Ren, Yaohui Huang, Fei Li, Weibo Hua, Sylvio Indris, Fujun Li*, Negative Lattice Expansion in an O3-Type Transition-Metal Oxide Cathode for Highly Stable Sodium-Ion Batteries, Angew. Chem. Int. Ed. 2024, 136, e202316949.

  • Tong Zhang, Meng Ren, Yaohui Huang, Fei Li, Weibo Hua, Sylvio Indris, Fujun Li*, Negative Lattice Expansion in an O3-Type Transition-Metal Oxide Cathode for Highly Stable Sodium-Ion Batteries, Angew. Chem. Int. Ed. 2024, DOI: 10.1002/ange.202316949.

    Tong Zhang, Meng Ren, Yaohui Huang, Fei Li, Weibo Hua, Sylvio Indris, Fujun Li*, Negative Lattice Expansion in an O3-Type Transition-Metal Oxide Cathode for Highly Stable Sodium-Ion Batteries, Angew. Chem. Int. Ed. 2024, 136, e202316949.

  • Zhuoliang Jiang, Bo Wen, Yaohui Huang, Yihe Guo, Yuzhe Wang, Fujun Li*, New Reaction Pathway of Superoxide Disproportionation Induced by a Soluble Catalyst in Li-O2 Batteries, Angew. Chem. Int. Ed. 2023, DOI: 10.1002/anie.202315314.

     Zhuoliang Jiang, Bo Wen, Yaohui Huang, Yihe Guo, Yuzhe Wang, Fujun Li*, New Reaction Pathway of Superoxide Disproportionation Induced by a Soluble Catalyst in Li-O2 Batteries, Angew. Chem. Int. Ed. 2024, 63, e202315314.

  • Zhuoliang Jiang, Bo Wen, Yaohui Huang, Yihe Guo, Yuzhe Wang, Fujun Li*, New Reaction Pathway of Superoxide Disproportionation Induced by a Soluble Catalyst in Li-O2 Batteries, Angew. Chem. Int. Ed. 2023, DOI: 10.1002/anie.202315314.

    Zhuoliang Jiang, Bo Wen, Yaohui Huang, Yihe Guo, Yuzhe Wang, Fujun Li*, New Reaction Pathway of Superoxide Disproportionation Induced by a Soluble Catalyst in Li-O2 Batteries, Angew. Chem. Int. Ed. 2024, 63, e202315314.

  • Liubin Wang*, Ningbo Liu, Xiaoying Zhao, Xiaohan Wang, Tong Zhang, Zhiqiang Luo*, Fujun Li*, Copper and Conjugated Carbonyls of Metal-organic Polymer as Dual Redox Centers for Na Storage, Chem. Sci. 2024, DOI:10.1039/D3SC05023H.

    Liubin Wang*, Ningbo Liu, Xiaoying Zhao, Xiaohan Wang, Tong Zhang, Zhiqiang Luo*, Fujun Li*, Copper and Conjugated Carbonyls of Metal-organic Polymer as Dual Redox Centers for Na Storage, Chem. Sci. 2024, 15, 2133.

  • Yaohui Huang, Jiarun Geng, Tong Zhang, Zhuoliang Jiang, Hengyi Fang, Wei Hu, Fujun Li*, Interfacial Chemistry Regulation with Functional Frameworks for Stable Metal Batteries, J. Mater. Chem. A 2024, DOI: 10.1039/D3TA07229K.

    Yaohui Huang, Jiarun Geng, Tong Zhang, Zhuoliang Jiang, Hengyi Fang, Wei Hu, Fujun Li*, Interfacial Chemistry Regulation with Functional Frameworks for Stable Metal Batteries, J. Mater. Chem. A 2024, DOI: 10.1039/D3TA07229K.

  • Yaohui Huang, Jiarun Geng, Zhuoliang Jiang, Meng Ren, Bo Wen, Jun Chen, Fujun Li*, Solvation Structure with Enhanced Anionic Coordination for Stable Anodes in Lithium-Oxygen Batteries, Angew. Chem. Int. Ed. 2023, DOI: 10.1002/anie.202306236.

    Yaohui Huang, Jiarun Geng, Zhuoliang Jiang, Meng Ren, Bo Wen, Jun Chen, Fujun Li*, Solvation Structure with Enhanced Anionic Coordination for Stable Anodes in Lithium-Oxygen Batteries, Angew. Chem. Int. Ed. 2023, 62, e202306236.

  • Yaohui Huang, Jiarun Geng, Zhuoliang Jiang, Meng Ren, Bo Wen, Jun Chen, Fujun Li*, Solvation Structure with Enhanced Anionic Coordination for Stable Anodes in Lithium-Oxygen Batteries, Angew. Chem. Int. Ed. 2023, DOI: 10.1002/anie.202306236.

    Yaohui Huang, Jiarun Geng, Zhuoliang Jiang, Meng Ren, Bo Wen, Jun Chen, Fujun Li*, Solvation Structure with Enhanced Anionic Coordination for Stable Anodes in Lithium-Oxygen Batteries, Angew. Chem. Int. Ed. 2023, 62, e202306236.

  • Jiarun Geng, Youxuan Ni, Zhuo Zhu, Quan Wu, Suning Gao, Weibo Hua, Sylvio Indris, Jun Chen, Fujun Li*, Reversible Metal and Ligand Redox Chemistry in Two-Dimensional Iron–Organic Framework for Sustainable Lithium-Ion Batteries, J. Am. Chem. Soc. 2023, DOI: 10.1021/jacs.2c08273.

    Jiarun Geng, Youxuan Ni, Zhuo Zhu, Quan Wu, Suning Gao, Weibo Hua, Sylvio Indris, Jun Chen, Fujun Li*, Reversible Metal and Ligand Redox Chemistry in Two-Dimensional Iron–Organic Framework for Sustainable Lithium-Ion Batteries, J. Am. Chem. Soc. 2023, 145, 1564.

  • Meng Ren, Shuo Zhao, Suning Gao, Tong Zhang, Machuan Hou, Wei Zhang, Kun Feng, Jun Zhong, Weibo Hua, Sylvio Indris, Kai Zhang, Jun Chen, Fujun Li*, Homeostatic Solid Solution in Layered Transition-Metal Oxide Cathodes of Sodium-Ion Batteries. J. Am. Chem. Soc. 2023, 145, 224.

    Meng Ren, Shuo Zhao, Suning Gao, Tong Zhang, Machuan Hou, Wei Zhang, Kun Feng, Jun Zhong, Weibo Hua, Sylvio Indris, Kai Zhang, Jun Chen, Fujun Li*, Homeostatic Solid Solution in Layered Transition-Metal Oxide Cathodes of Sodium-Ion Batteries. J. Am. Chem. Soc. 2023, 145, 224.

  • Jiarun Geng, Youxuan Ni, Zhuo Zhu, Quan Wu, Suning Gao, Weibo Hua, Sylvio Indris, Jun Chen, Fujun Li*, Reversible Metal and Ligand Redox Chemistry in Two-Dimensional Iron–Organic Framework for Sustainable Lithium-Ion Batteries, J. Am. Chem. Soc. 2023, DOI: 10.1021/jacs.2c08273.

    Jiarun Geng, Youxuan Ni, Zhuo Zhu, Quan Wu, Suning Gao, Weibo Hua, Sylvio Indris, Jun Chen, Fujun Li*, Reversible Metal and Ligand Redox Chemistry in Two-Dimensional Iron–Organic Framework for Sustainable Lithium-Ion Batteries, J. Am. Chem. Soc. 2023, 145, 1564.

  • Meng Ren, Shuo Zhao, Suning Gao, Tong Zhang, Machuan Hou, Wei Zhang, Kun Feng, Jun Zhong, Weibo Hua, Sylvio Indris, Kai Zhang, Jun Chen, Fujun Li*, Homeostatic Solid Solution in Layered Transition-Metal Oxide Cathodes of Sodium-Ion Batteries. J. Am. Chem. Soc. 2022, DOI: 10.1021/jacs.2c09725.

    Meng Ren, Shuo Zhao, Suning Gao, Tong Zhang, Machuan Hou, Wei Zhang, Kun Feng, Jun Zhong, Weibo Hua, Sylvio Indris, Kai Zhang, Jun Chen, Fujun Li*, Homeostatic Solid Solution in Layered Transition-Metal Oxide Cathodes of Sodium-Ion Batteries, J. Am. Chem. Soc. 2023, 145, 224.

  • Hengyi Fang, Suning Gao, Meng Ren, Yaohui Huang, Fangyi Cheng, Jun Chen, Fujun Li*, Dual-Function Presodiation with Sodium Diphenyl Ketone towards Ultra-stable Hard Carbon Anodes for Sodium-Ion Batteries, Angew. Chem. Int. Ed. 2022, 62, e202214717.

    Hengyi Fang, Suning Gao, Meng Ren, Yaohui Huang, Fangyi Cheng, Jun Chen, Fujun Li*, Dual-Function Presodiation with Sodium Diphenyl Ketone towards Ultra-stable Hard Carbon Anodes for Sodium-Ion Batteries, Angew. Chem. Int. Ed. 2023, 62, e202214717.

  • Meng Ren, Zhuo Zhu, Zhaohui Liang, Yaohui Huang, Tong Zhang, Machuan Hou, Kai Zhang, Zonghai Chen, Yushi He, Zifeng Ma, Jun Chen, Fujun Li*, Whole-Voltage-Range Solid-Solution Reaction in Layered Oxide Cathode of Sodium-Ion Batteries. small, 2023, 2304187.

    Meng Ren, Zhuo Zhu, Zhaohui Liang, Yaohui Huang, Tong Zhang, Machuan Hou, Kai Zhang, Zonghai Chen, Yushi He, Zifeng Ma, Jun Chen, Fujun Li*, Whole-Voltage-Range Solid-Solution Reaction in Layered Oxide Cathode of Sodium-Ion Batteries, Small 2023, 2304187.

  • Zhaohui Liang, Meng Ren, Yihe Guo, Tong Zhang, Xiuling Gao, Hua Ma, Fujun Li*, Depressed P3-O3’ Phase Transition in O3-Type Layered Cathode for Advanced Sodium-Ion Batteries. Inorg. Chem. Front. 2023, 10, 7187.

    Zhaohui Liang, Meng Ren, Yihe Guo, Tong Zhang, Xiuling Gao, Hua Ma, Fujun Li*, Depressed P3-O3’ Phase Transition in O3-Type Layered Cathode for Advanced Sodium-Ion Batteries, Inorg. Chem. Front. 2023, 10, 7187.

  • Chenchen Wang, Kuan Wang, Meng Ren, Yaohui Huang, Kai Zhang, Changzhong Liao, Kaimin Shih, Pengfei Yan*, Fujun Li*, Interfacial Chemistry Enables Highly Reversible Na Extraction/Intercalation in Layered-Oxide Cathode Materials, Chinese J. Chem., 2023, DOI: 10.1002/cjoc.202200835.

    Chenchen Wang, Kuan Wang, Meng Ren, Yaohui Huang, Kai Zhang, Changzhong Liao, Kaimin Shih, Pengfei Yan*, Fujun Li*, Interfacial Chemistry Enables Highly Reversible Na Extraction/Intercalation in Layered-Oxide Cathode Materials, Chinese J. Chem. 2023, 41, 1791.

  • Quan Wu, Shizhao Xiong, Fujun Li*, Aleksandar Matic*, Electro-Chemo-Mechanical Failure Mechanisms of Solid-State Electrolytes, Batteries & Supercaps 2023, e202300321.

    Quan Wu, Shizhao Xiong, Fujun Li*, Aleksandar Matic*, Electro-Chemo-Mechanical Failure Mechanisms of Solid-State Electrolytes, Batteries & Supercaps 2023, e202300321.

  • Yuankun Wang, Zhiming Li, Yunpeng Hou, Zhimeng Hao, Qiu Zhang, Youxuan Ni, Yong Lu, Zhenhua Yan, Kai Zhang, Qing Zhao, Fujun Li, Jun Chen*, Emerging Electrolytes with Fluorinated Solvents for Rechargeable Lithium-Based Batteries, Chem. Soc. Rev. 2023, 52, 2713.

    Yuankun Wang, Zhiming Li, Yunpeng Hou, Zhimeng Hao, Qiu Zhang, Youxuan Ni, Yong Lu, Zhenhua Yan, Kai Zhang, Qing Zhao, Fujun Li, Jun Chen*, Emerging Electrolytes with Fluorinated Solvents for Rechargeable Lithium-Based Batteries, Chem. Soc. Rev. 2023, 52, 2713.

  • Min Wang, Wenhao Sun, Kun Zhang, Zhonghua Zhang*, Aobing Du, Shanmu Dong, Jinlei Zhang, Jing Liu, Xi Chen, Zhenfang Zhou, Fujun Li, Zhenjiang Li, Guicun Li*, Guanglei Cui*, Synergy of Coordination and Trace Ionization from Co-Solvents Enables Reversible Magnesium Electroplating/Stripping Behavior, Energy Environ. Sci. 2024, 17, 630.

    Min Wang, Wenhao Sun, Kun Zhang, Zhonghua Zhang*, Aobing Du, Shanmu Dong, Jinlei Zhang, Jing Liu, Xi Chen, Zhenfang Zhou, Fujun Li, Zhenjiang Li, Guicun Li*, Guanglei Cui*, Synergy of Coordination and Trace Ionization from Co-Solvents Enables Reversible Magnesium Electroplating/Stripping Behavior, Energy Environ. Sci. 2024, 17, 630.

  • Zhiwei Jing, Suning Wang, Qiang Fu, Volodymyr Baran, Akhil Tayal, Nicola P.M. Casati, Alexander Missyul, Laura Simonelli, Michael Knapp, Fujun Li, Helmut Ehrenberg, Sylvio Indris, Chongxin Shan, Weibo Hua*, Architecting “Li-Rich Ni-Rich” Core-Shell Layered Cathodes for High-Energy Li-Ion Batteries, Energy Stor. Mater. 2023, 59, 102775.

    Zhiwei Jing, Suning Wang, Qiang Fu, Volodymyr Baran, Akhil Tayal, Nicola P.M. Casati, Alexander Missyul, Laura Simonelli, Michael Knapp, Fujun Li, Helmut Ehrenberg, Sylvio Indris, Chongxin Shan, Weibo Hua*, Architecting “Li-Rich Ni-Rich” Core-Shell Layered Cathodes for High-Energy Li-Ion Batteries, Energy Stor. Mater. 2023, 59, 102775.

  • Xiaoxia Yang, Suning Wang, Hang Li, Jiali Peng, Wen-Jing Zeng, Hsin-Jung Tsai, Sung-Fu Hung, Sylvio Indris, Fujun Li, Weibo Hua*, Boosting the Ultrastable High-Na-Content P2-type Layered Cathode Materials with Zero-Strain Cation Storage via a Lithium Dual-Site Substitution Approach, ACS Nano, 2023, 17, 18616.

    Xiaoxia Yang, Suning Wang, Hang Li, Jiali Peng, Wen-Jing Zeng, Hsin-Jung Tsai, Sung-Fu Hung, Sylvio Indris, Fujun Li, Weibo Hua*, Boosting the Ultrastable High-Na-Content P2-type Layered Cathode Materials with Zero-Strain Cation Storage via a Lithium Dual-Site Substitution Approach, ACS Nano 2023, 17, 18616.

  • Jing Liu, Zhenfang Zhou, Min Wang, Jinlei Zhang, Zhenjiang Li, Guicun Li*, Fujun Li, Guanglei Cui, Zhonghua Zhang*, Intercalation Species Regulation in Layered Vanadium Oxide Scaffolds Enables Long Cycle Life Mg-Metal Anodes, Chem. Eng. J. 2023, 466, 143308.

    Jing Liu, Zhenfang Zhou, Min Wang, Jinlei Zhang, Zhenjiang Li, Guicun Li*, Fujun Li, Guanglei Cui, Zhonghua Zhang*, Intercalation Species Regulation in Layered Vanadium Oxide Scaffolds Enables Long Cycle Life Mg-Metal Anodes, Chem. Eng. J. 2023, 466, 143308.

  • Zhuo Yang, Yong Lu, Xiaomeng Liu, Fujun Li, Jun Chen*, Application of High Energy X-ray Diffraction and Rietveld Refinement in Layered Lithium Transition Metal Oxide Cathode Materials, Nano Res. 2023, 16, 9954.

    Zhuo Yang, Yong Lu, Xiaomeng Liu, Fujun Li, Jun Chen*, Application of High Energy X-ray Diffraction and Rietveld Refinement in Layered Lithium Transition Metal Oxide Cathode Materials, Nano Res. 2023, 16, 9954.

  • Hengyi Fang, Suning Gao, Meng Ren, Yaohui Huang, Fangyi Cheng, Jun Chen, Fujun Li*, Dual-Function Presodiation with Sodium Diphenyl Ketone towards Ultra-stable Hard Carbon Anodes for Sodium-Ion Batteries, Angew. Chem. Int. Ed. 2022, DOI: 10.1002/anie.202214717.

    Hengyi Fang, Suning Gao, Meng Ren, Yaohui Huang, Fangyi Cheng, Jun Chen, Fujun Li*, Dual-Function Presodiation with Sodium Diphenyl Ketone towards Ultra-stable Hard Carbon Anodes for Sodium-Ion Batteries, Angew. Chem. Int. Ed. 2023, 62, e202214717.

  • Qingliang Lv, Zhuo Zhu, Youxuan Ni, Bo Wen, Zhuoliang Jiang, Hengyi Fang, Fujun Li*, Atomic Ruthenium-Riveted Metal–Organic Framework with Tunable d-Band Modulates Oxygen Redox for Lithium–Oxygen Batteries, J. Am Chem. Soc. 2022, DOI: 10.1021/jacs.2c11676.

    Qingliang Lv, Zhuo Zhu, Youxuan Ni, Bo Wen, Zhuoliang Jiang, Hengyi Fang, Fujun Li*, Atomic Ruthenium-Riveted Metal–Organic Framework with Tunable d-Band Modulates Oxygen Redox for Lithium–Oxygen Batteries, J. Am Chem. Soc. 2022, 144, 23239.

  • Suning Wang, Tian Zhao, Jinniu Chen, Alexander Missyul, Laura Simonelli, Laijun Liu, Fujun Li, Xiangyang Kong, Weibo Hua*, Accumulated Lattice Strain as an Intrinsic Trigger for the First-Cycle Voltage Decay in Li-Rich 3d Layered Oxides, ACS Appl. Mater. Interfaces, 2023, 15, 20200.

    Suning Wang, Tian Zhao, Jinniu Chen, Alexander Missyul, Laura Simonelli, Laijun Liu, Fujun Li, Xiangyang Kong, Weibo Hua*, Accumulated Lattice Strain as an Intrinsic Trigger for the First-Cycle Voltage Decay in Li-Rich 3d Layered Oxides, ACS Appl. Mater. Interfaces 2023, 15, 20200.

  • Qingliang Lv, Zhuo Zhu, Youxuan Ni, Bo Wen, Zhuoliang Jiang, Hengyi Fang, and Fujun Li*, Atomic Ruthenium-Riveted Metal–Organic Framework with Tunable d-Band Modulates Oxygen Redox for Lithium–Oxygen Batteries, J. Am Chem. Soc. 2022, DOI: 10.1021/jacs.2c11676.

    Qingliang Lv, Zhuo Zhu, Youxuan Ni, Bo Wen, Zhuoliang Jiang, Hengyi Fang, Fujun Li*, Atomic Ruthenium-Riveted Metal–Organic Framework with Tunable d-Band Modulates Oxygen Redox for Lithium–Oxygen Batteries, J. Am Chem. Soc. 2022, 144, 23239.

  • Zhuoliang Jiang, Yaohui Huang, Zhuo Zhu, Fujun Li*, Quenching singlet oxygen via intersystem crossing for a stable Li-O2 battery, PNAS 2022, 119, e2202835119.

    Zhuoliang Jiang, Yaohui Huang, Zhuo Zhu, Suning Gao, Qingliang Lv, Fujun Li*, Quenching singlet oxygen via intersystem crossing for a stable Li-O2 battery, PNAS 2022, 119, e2202835119.

  • Xunzhu Zhou,Qiu Zhang,Zhuo Zhu,Yichao Cai,Haixia Li,Fujun Li, Anion Reinforced Solvation for Gradient Inorganic-Rich Interphase Enables High-Rate and Stable Sodium Batteries, Angew. Chem. Int. Ed. 2022, DOI: 10.1002/anie.202205045.

    Xunzhu Zhou, Qiu Zhang, Zhuo Zhu, Yichao Cai, Haixia Li, Fujun Li*, Anion Reinforced Solvation for Gradient Inorganic-Rich Interphase Enables High-Rate and Stable Sodium Batteries, Angew. Chem. Int. Ed. 2022, 61, e202205045.

  • Zhuo Zhu,‡ Qingliang Lv,‡ Youxuan Ni, Suning Gao, Jiarun Geng, Jing Liang, and Fujun Li*, Internal Electric Field and Interfacial Bonding Engineered Step-Scheme Junction for a Visible-Light-Involved Lithium-Oxygen Battery,Angew. Chem. Int. Ed. 2022, 61, e202116699.

    Zhuo Zhu,‡ Qingliang Lv,‡ Youxuan Ni, Suning Gao, Jiarun Geng, Jing Liang, Fujun Li*, Internal Electric Field and Interfacial Bonding Engineered Step-Scheme Junction for a Visible-Light-Involved Lithium-Oxygen Battery, Angew. Chem. Int. Ed. 2022, 61, e202116699.

  • Zhuoliang Jiang, Yaohui Huang, Zhuo Zhu, Fujun Li*, Quenching singlet oxygen via intersystem crossing for a stable Li-O2 battery, PNAS 2022, 119, e2202835119.

    Zhuoliang Jiang, Yaohui Huang, Zhuo Zhu, Suning Gao, Qingliang Lv, Fujun Li*, Quenching Singlet Oxygen via Intersystem Crossing for a Stable Li-O2 Battery, PNAS 2022, 119, e2202835119.

  • Xunzhu Zhou,Qiu Zhang,Zhuo Zhu,Yichao Cai,Haixia Li,Fujun Li, Anion Reinforced Solvation for Gradient Inorganic-Rich Interphase Enables High-Rate and Stable Sodium Batteries, Angew. Chem. Int. Ed. 2022, DOI: 10.1002/anie.202205045.

    Xunzhu Zhou, Qiu Zhang, Zhuo Zhu, Yichao Cai, Haixia Li, Fujun Li*, Anion Reinforced Solvation for Gradient Inorganic-Rich Interphase Enables High-Rate and Stable Sodium Batteries, Angew. Chem. Int. Ed. 2022, 61, e202205045.

  • Zhuo Zhu,‡ Qingliang Lv,‡ Youxuan Ni, Suning Gao, Jiarun Geng, Jing Liang, and Fujun Li*, Internal Electric Field and Interfacial Bonding Engineered Step-Scheme Junction for Visible Light-Involved Lithium-Oxygen Battery, Angew. Chem. Int. Ed. 2022, DOI: 10.1002/anie.202116699.

    Zhuo Zhu,‡ Qingliang Lv,‡ Youxuan Ni, Suning Gao, Jiarun Geng, Jing Liang, and Fujun Li*, Internal Electric Field and Interfacial Bonding Engineered Step-Scheme Junction for a Visible-Light-Involved Lithium-Oxygen Battery,Angew. Chem. Int. Ed. 2022, 61, e202116699.

  • Qingliang Lv,‡ Zhuo Zhu,‡ Youxuan Ni, Jiarun Geng, and Fujun Li*,Spin-State Manipulation of Two-Dimensional Metal-Organic Framework with Enhanced Metal-Oxygen Covalency for Lithium-Oxygen Batteries,Angew. Chem. Int. Ed. 2021

    Qingliang Lv,‡ Zhuo Zhu,‡ Youxuan Ni, Jiarun Geng, and Fujun Li*, Spin-State Manipulation of Two-Dimensional Metal-Organic Framework with Enhanced Metal-Oxygen Covalency for Lithium-Oxygen Batteries,Angew. Chem. Int. Ed. 2022, 61, e202114293.

  • Dongfeng Du, Zhuo Zhu, Kwong-Yu Chan, Fujun Li*, Jun Chen, Photoelectrochemistry of Oxygen in Rechargeable Li–O2 Batteries, Chem. Soc. Rev. 2022, 51, 1846.

    Dongfeng Du, Zhuo Zhu, Kwong-Yu Chan, Fujun Li*, Jun Chen, Photoelectrochemistry of Oxygen in Rechargeable Li–O2 Batteries, Chem. Soc. Rev. 2022, 51, 1846.

  • Qingliang Lv,‡ Zhuo Zhu,‡ Youxuan Ni, Jiarun Geng, and Fujun Li*,Spin-State Manipulation of Two-Dimensional Metal-Organic Framework with Enhanced Metal-Oxygen Covalency for Lithium-Oxygen Batteries,Angew. Chem. Int. Ed. 2021

    Qingliang Lv,‡ Zhuo Zhu,‡ Youxuan Ni, Jiarun Geng, Fujun Li*, Spin-State Manipulation of Two-Dimensional Metal-Organic Framework with Enhanced Metal-Oxygen Covalency for Lithium-Oxygen Batteries,Angew. Chem. Int. Ed. 2022, 61, e202114293.

  • Dongfeng Du, Zhuo Zhu, Kwong-Yu Chan Fujun Li*, and  Jun Chen, Photoelectrochemistry of oxygen in rechargeable Li–O2 batteries, Chem. Soc. Rev. 2022, DOI: 10.1039/D1CS00877C.

    Dongfeng Du, Zhuo Zhu, Kwong-Yu Chan, Fujun Li*, Jun Chen, Photoelectrochemistry of Oxygen in Rechargeable Li–O2 Batteries, Chem. Soc. Rev. 2022, 51, 1846.

  • Fujun Li*, Yan Yu*, and Jun Lu*, Energy Spotlight: Inhibiting the Growth of Lithium Dendrites, ACS Energy Lett. 2022, 7, 3, 1125.

    Fujun Li*, Yan Yu*, Jun Lu*, Energy Spotlight: Inhibiting the Growth of Lithium Dendrites, ACS Energy Lett. 2022, 7, 1125.

  • Zhuoliang Jiang, Bo Wen, Yaohui Huang, Haixia Li, Fujun Li*, Metal-Organic Frameworks based Lithium-Oxygen Batteries, Chem. Eur. J. 2022, DOI: 10.1002/chem.202202130.

    Zhuoliang Jiang, Bo Wen, Yaohui Huang, Haixia Li, Fujun Li*, Metal-Organic Frameworks based Lithium-Oxygen Batteries, Chem. Eur. J. 2022, 28, e202202130.

  • Yaohui Huang, Bo Wen, Zhuoliang Jiang, Fujun Li*, Solvation chemistry of electrolytes for stable anodes of lithium metal batteries, Nano Research 2022, DOI: 10.1007/s12274-022-4839-8.

    Yaohui Huang, Bo Wen, Zhuoliang Jiang, Fujun Li*, Solvation chemistry of electrolytes for stable anodes of lithium metal batteries, Nano Research 2022, 16, 8072.

  • Quan Wu, Tong Zhang, Jiarun Geng, Suning Gao, Hua Ma, and Fujun Li*, Anionic Redox Chemistry for Sodium-Ion Batteries: Mechanisms, Advances, and Challenges, Energy Fuels 2022, DOI: 10.1021/acs.energyfuels.2c01601.

    Quan Wu, Tong Zhang, Jiarun Geng, Suning Gao, Hua Ma, Fujun Li*, Anionic Redox Chemistry for Sodium-Ion Batteries: Mechanisms, Advances, and Challenges, Energy Fuels 2022, 36, 8081.

  • Siyuan Li, Yangyang Zhang, Kaixiang Lei*, Qian Yang, Zheng Liu, Kezhu Jiang, Fujun Li*, Qiongqiong Lu, Daria Mikhailova, Shijian Zheng*, Na+/Vacancy Disordered Manganese-Based Oxide Cathode with Ultralow Strain Enabled by Tuning Charge Distribution, J. Mater. Chem. A, 2022, DOI: 10.1039/D2TA00688J.

    Siyuan Li, Yangyang Zhang, Kaixiang Lei*, Qian Yang, Zheng Liu, Kezhu Jiang, Fujun Li*, Qiongqiong Lu, Daria Mikhailova, Shijian Zheng*, Na+/Vacancy Disordered Manganese-Based Oxide Cathode with Ultralow Strain Enabled by Tuning Charge Distribution, J. Mater. Chem. A, 2022, 10, 10391.

  • Bo Wen, Zhuo Zhu, Fujun Li*, Advances and Challenges on Cathode Catalysts for Lithium Oxygen Batteries, Journal of Electrochemistry, DOI: 10.13208/j.electrochem.2215001.​

    Bo Wen, Zhuo Zhu, Fujun Li*, Advances and Challenges on Cathode Catalysts for Lithium Oxygen Batteries, Journal of Electrochemistry, DOI: 10.13208/j.electrochem.2215001.

  • Yong Lu, Qiu Zhang, Fujun Li, Jun Chen*, Emerging Lithiated Organic Cathode Materials for Lithium-Ion Full Batteries, Angew. Chem. Int. Ed. 2022, DOI: 10.1002/ange.202216047.

    Yong Lu, Qiu Zhang, Fujun Li, Jun Chen*, Emerging Lithiated Organic Cathode Materials for Lithium-Ion Full Batteries, Angew. Chem. Int. Ed. 2022, 135, e202216047.

  • Yizeng Wu, Bo Zhao, Xuewei Zhao, Lei Han, Yuanyuan Shang, Zhiqiang Niu, Yulong Liang, Xinbo Zhang, Zhuoliang Jiang, Fujun Li, Anyuan Cao*, Compressible, gradient-immersion, regenerable carbon nanotube sponges as high-performance lithium–oxygen battery cathodes, Materials Today, 2022, DOI: 10.1016/j.mattod.2022.07.005.

    Yizeng Wu, Bo Zhao, Xuewei Zhao, Lei Han, Yuanyuan Shang, Zhiqiang Niu, Yulong Liang, Xinbo Zhang, Zhuoliang Jiang, Fujun Li, Anyuan Cao*, Compressible, gradient-immersion, regenerable carbon nanotube sponges as high-performance lithium–oxygen battery cathodes, Materials Today, 2022, 59, 68.

  • zhuzhuo PNAS

    Zhuo Zhu, Youxuan Ni, Qingliang Lv, Jiarun Geng, Wei Xie, Fujun Li*, and Jun Chen, Surface Plasmon Mediates the Visible Light-Responsive Lithium-Oxygen Battery with Au Nanoparticles on Defective Carbon Nitride, PNAS 2021, 118, e2024619118.

  • 1. Zhuo Zhu, Youxuan Ni, Qingliang Lv, Jiarun Geng, Xie Wei, Fujun Li*, and Jun Chen, Surface plasmon mediates the visible light-responsive lithium-oxygen battery with Au nanoparticles on defective carbon nitride, PNAS 2021, 118, 17, e2024619118.

    Zhuo Zhu, Youxuan Ni, Qingliang Lv, Jiarun Geng, Wei Xie, Fujun Li*, Jun Chen, Surface plasmon mediates the visible light-responsive lithium-oxygen battery with Au nanoparticles on defective carbon nitride, PNAS 2021, 118, e2024619118.

  • 2. Chenchen Wang, Luojia Liu, Shuo Zhao, Yanchen Liu, Yubo Yang, Haijun Yu, Suwon Lee, Gi-Hyeok Lee, Yong-Mook Kang, Rong Liu, Fujun Li*, and Jun Chen, Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery, Nat. Commun. 2021, 12, 2256.

    Chenchen Wang, Luojia Liu, Shuo Zhao, Yanchen Liu, Yubo Yang, Haijun Yu, Suwon Lee, Gi-Hyeok Lee, Yong-Mook Kang, Rong Liu, Fujun Li*, and Jun Chen, Tuning Local Chemistry of P2 Layered-Oxide Cathode for High Energy and Long Cycles of Sodium-Ion Battery, Nat. Commun. 2021, 12, 2256.

  • 3. Qingliang Lv,§ Zhuo Zhu,§ Shuo Zhao, Liubin Wang, Qing Zhao, Fujun Li*, Lynden A. Archer*, and Jun Chen*, Semiconducting Metal−Organic Polymer Nanosheets for a Photoinvolved Li−O2 Battery under Visible Light, J. Am. Chem. Soc. 2021, 143, 1941.

    Qingliang Lv,§ Zhuo Zhu,§ Shuo Zhao, Liubin Wang, Qing Zhao, Fujun Li*, Lynden A. Archer*, and Jun Chen*, Semiconducting Metal−Organic Polymer Nanosheets for a Photoinvolved Li−O2 Battery under Visible Light, J. Am. Chem. Soc. 2021, 143, 1941.

  • 4. Shuo Zhao, Chenchen Wang, Dongfeng Du, Lin Li, Shulei Chou*, Fujun Li*, and Jun Chen, Bifunctional Effects of Cation Additive on Na-O2 Batteries, Angew. Chem. Int. Ed. 2021, 60, 3205.

    Shuo Zhao, Chenchen Wang, Dongfeng Du, Lin Li, Shulei Chou*, Fujun Li*, and Jun Chen, Bifunctional Effects of Cation Additive on Na-O2 Batteries, Angew. Chem. Int. Ed. 2021, 60, 3205.

  • 5. Liubin Wang, Youxuan Ni, Xuesen Hou, Li Chen, Fujun Li*, and Jun Chen, A two-dimensional metal-organic polymer enabled by robust nickel-nitrogen and hydrogen bonds for exceptional sodium-ion storage, Angew. Chem. Int. Ed. 2020, 59, 22126.

    Liubin Wang, Youxuan Ni, Xuesen Hou, Li Chen, Fujun Li*, and Jun Chen, A Two-Dimensional Metal-Organic Polymer Enabled by Robust Nickel-Nitrogen and Hydrogen Bonds for Exceptional Sodium-Ion Storage, Angew. Chem. Int. Ed. 2020, 59, 22126.

  • 6. Dongfeng Du, Shuo Zhao, Zhuo Zhu, Fujun Li*, and Jun Chen, Photo-excited oxygen reduction and oxygen evolution reactions enabling a high-performance Zn-air battery, Angew. Chem. Int. Ed. 2020, 59, 18140.

    Dongfeng Du, Shuo Zhao, Zhuo Zhu, Fujun Li*, and Jun Chen, Photo-Excited Oxygen Reduction and Oxygen Evolution Reactions Enabling a High-Performance Zn-Air Battery, Angew. Chem. Int. Ed. 2020, 59, 18140.

  • 8. Dongdong Zhu, Qiancheng Zhao, Guilan Fan, Shuo Zhao, Liubin Wang, Fujun Li*, and Jun Chen, Photo‐Induced Oxygen Reduction Reaction Boosts The Output Voltage of Zn‐Air Battery, Angew. Chem. Int. Ed. 2019, 58, 12460.

    Dongdong Zhu, Qiancheng Zhao, Guilan Fan, Shuo Zhao, Liubin Wang, Fujun Li*, and Jun Chen, Photo‐Induced Oxygen Reduction Reaction Boosts The Output Voltage of Zn‐Air Battery, Angew. Chem. Int. Ed. 2019, 58, 12460.

  • 9. Zhuo Zhu, Xiaomeng Shi, Guilan Fan, Fujun Li*, and Jun Chen, Photo‐energy conversion and storage in an aprotic Li‐O2 battery, Angew. Chem. Int. Ed. 2019, 58, 19021.

    Zhuo Zhu, Xiaomeng Shi, Guilan Fan, Fujun Li*, and Jun Chen, Photo‐Energy Conversion and Storage in an Aprotic Li‐O2 Battery, Angew. Chem. Int. Ed. 2019, 58, 19021.

  • 11. Zhiqiang Luo, Luojia Liu, Jiaxin Ning, Kaixiang Lei, Yong Lu, Fujun Li*, and Jun Chen, A Microporous Covalent Organic Framework with Abundant Accessible Carbonyls for Lithium-ion Batteries, Angew. Chem. Int. Ed. 2018, 57, 9443 (VIP).

    Zhiqiang Luo, Luojia Liu, Jiaxin Ning, Kaixiang Lei, Yong Lu, Fujun Li*, and Jun Chen, A Microporous Covalent Organic Framework with Abundant Accessible Carbonyls for Lithium-ion Batteries, Angew. Chem. Int. Ed. 2018, 57, 9443 (VIP).

  • 12. Kaixiang Lei, Chenchen Wang, Luojia Liu, Yuwen Luo, Chaonan Mu, Fujun Li*, and Jun Chen, A Porous Network of Bismuth Used as Anode Material for High-Energy-Density Potassium-Ion Batteries, Angew. Chem. Int. Ed. 2018, 57, 4687.

    Kaixiang Lei, Chenchen Wang, Luojia Liu, Yuwen Luo, Chaonan Mu, Fujun Li*, and Jun Chen, A Porous Network of Bismuth Used as Anode Material for High-Energy-Density Potassium-Ion Batteries, Angew. Chem. Int. Ed. 2018, 57, 4687.

  • 13. Yue Yuan, Chenchen Wang, Kaixiang Lei, Haixia Li, Fujun Li*, and Jun Chen, Sodium-Ion Hybrid Capacitor of High Power and Energy Density, ACS Cent. Sci. 2018, 4, 1261.

    Yue Yuan, Chenchen Wang, Kaixiang Lei, Haixia Li, Fujun Li*, Jun Chen, Sodium-Ion Hybrid Capacitor of High Power and Energy Density, ACS Cent. Sci. 2018, 4, 1261.

  • 14. Chenchen Wang, Liubin Wang, Fujun Li*, Fangyi Cheng, and Jun Chen, Bulk Bismuth as a High-Capacity and Ultralong Cycle-Life Anode for Sodium-Ion Batteries by Coupling with Glyme-Based Electrolytes, Adv. Mater. 2017, 29, 1702212.

    Chenchen Wang, Liubin Wang, Fujun Li*, Fangyi Cheng, and Jun Chen, Bulk Bismuth as a High-Capacity and Ultralong Cycle-Life Anode for Sodium-Ion Batteries by Coupling with Glyme-Based Electrolytes, Adv. Mater. 2017, 29, 1702212.

  • 1. Fujun Li, Shichao Wu, De Li, Tao Zhang, Ping He, Atsuo Yamada, and Haoshen Zhou*, The water catalysis at oxygen cathodes of lithium-oxygen cells, Nature Commun. 2015, 6, 7843.

    Fujun Li, Shichao Wu, De Li, Tao Zhang, Ping He, Atsuo Yamada, Haoshen Zhou*, The water catalysis at oxygen cathodes of lithium-oxygen cells, Nature Commun. 2015, 6, 7843.

  • 2. Fujun Li, Dai-ming Tang, Tao Zhang, Kaiming Liao, Ping He, Dmitri Golberg, Atsuo Yamada, and Haoshen Zhou*, Superior performance of a Li-O2 battery with metallic RuO2 hollow spheres as the carbon-free cathode, Adv. Energy Mater. 2015, 5, 1500294.

    Fujun Li, Dai-ming Tang, Tao Zhang, Kaiming Liao, Ping He, Dmitri Golberg, Atsuo Yamada, Haoshen Zhou*, Superior performance of a Li-O2 battery with metallic RuO2 hollow spheres as the carbon-free cathode, Adv. Energy Mater. 2015, 5, 1500294.

  • 3. Shichao Wu, Jing Tang, Fujun Li*, Xizheng Liu, and Haoshen Zhou*, Low charge overpotentials in lithium-oxygen batteries based on tetraglyme electrolytes with a limited amount of water, Chem. Commun. 2015, 51, 16860.

    Shichao Wu, Jing Tang, Fujun Li*, Xizheng Liu, Haoshen Zhou*, Low charge overpotentials in lithium-oxygen batteries based on tetraglyme electrolytes with a limited amount of water, Chem. Commun. 2015, 51, 16860.

  • 4. Kaiming Liao, Tao Zhang, Yongqing Wang, Fujun Li, Zelang Jian, Haijun Yu, Haoshen Zhou*, Nanoporous Ru as a Carbon- and Binder-Free Cathode for Li-O2 Batteries, ChemSusChem 2015, 8, 1429.

    Kaiming Liao, Tao Zhang, Yongqing Wang, Fujun Li, Zelang Jian, Haijun Yu, Haoshen Zhou*, Nanoporous Ru as a Carbon- and Binder-Free Cathode for Li-O2 Batteries, ChemSusChem 2015, 8, 1429.

  • 5. Jin Yi, Kaiming Liao, Chaofeng Zhang, Tao Zhang, Fujun Li, Haoshen Zhou*, Facile in Situ Preparation of Graphitic-C3N4@carbon Paper As an Efficient Metal-Free Cathode for Nonaqueous Li-O2 Battery, ACS appl. Mater. Interfaces 2015, 7, 10823.

    Jin Yi, Kaiming Liao, Chaofeng Zhang, Tao Zhang, Fujun Li, Haoshen Zhou*, Facile in Situ Preparation of Graphitic-C3N4@carbon Paper As an Efficient Metal-Free Cathode for Nonaqueous Li-O2 Battery, ACS appl. Mater. Interfaces 2015, 7, 10823.

  • 1. Fujun Li, Dai-Ming Tang, Zelang Jian, Dequan Liu, Dmitri Golberg, Atsuo Yamada, and Haoshen Zhou*, Li-O2 battery based on highly efficient Sb-doped tin oxide supported Ru nanoparticles, Adv. Mater. 2014, 26, 4659.

    Fujun Li, Dai-Ming Tang, Zelang Jian, Dequan Liu, Dmitri Golberg, Atsuo Yamada, Haoshen Zhou*, Li-O2 battery based on highly efficient Sb-doped tin oxide supported Ru nanoparticles, Adv. Mater. 2014, 26, 4659.

  • 2. Fujun Li, Yong Chen*, Dai-Ming Tang, Zelang Jian, Chang Liu, Dmitri Golberg, Atsuo Yamada, and Haoshen Zhou*, Performance-improved Li-O2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode, Energy Environ. Sci. 2014, 7, 1648.

    Fujun Li, Yong Chen*, Dai-Ming Tang, Zelang Jian, Chang Liu, Dmitri Golberg, Atsuo Yamada, Haoshen Zhou*, Performance-improved Li-O2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode, Energy Environ. Sci. 2014, 7, 1648.

  • 3. Zelang Jian, Pan Liu, Fujun Li, Ping He, Xianwei Guo, Mingwei Chen, Haoshen Zhou*, Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries, Angew. Chem. Int. Ed. 2014, 53, 442.

    Zelang Jian, Pan Liu, Fujun Li, Ping He, Xianwei Guo, Mingwei Chen, Haoshen Zhou*, Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries, Angew. Chem. Int. Ed. 2014, 53, 442.

  • 4. Zelang Jian, Yong Chen, Fujun Li, Tao Zhang, Chang Liu, Haoshen Zhou*, High capacity Na-O2 batteries with carbon nanotube paper as binder-free air cathode, J. Power Sources 2014, 251, 466.

    Zelang Jian, Yong Chen, Fujun Li, Tao Zhang, Chang Liu, Haoshen Zhou*, High capacity Na-O2 batteries with carbon nanotube paper as binder-free air cathode, J. Power Sources 2014, 251, 466.

  • 5. Zelang Jian, Pan Liu, Fujun Li, Mingwei Chen, Haoshen Zhou*, Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries, J. Mater. Chem. A 2014, 2, 13805.

    Zelang Jian, Pan Liu, Fujun Li, Mingwei Chen, Haoshen Zhou*, Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries, J. Mater. Chem. A 2014, 2, 13805.

  • 6. Zelang Jian, Bin Zhao, Pan Liu, Fujun Li, Mingbo Zheng, Mingwei Chen, Yi Shi, Haoshen Zhou*, Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries, Chem. Commun. 2014, 50, 1215.

    Zelang Jian, Bin Zhao, Pan Liu, Fujun Li, Mingbo Zheng, Mingwei Chen, Yi Shi, Haoshen Zhou*, Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries, Chem. Commun. 2014, 50, 1215.

  • 1. Fujun Li, Tao Zhang, and Haoshen Zhou*, Challenges of non-aqueous Li-O2 batteries: electrolytes, catalysts, and anodes, Energy Environ. Sci. 2013, 6, 1125.

    Fujun Li, Tao Zhang, and Haoshen Zhou*, Challenges of non-aqueous Li-O2 batteries: electrolytes, catalysts, and anodes, Energy Environ. Sci. 2013, 6, 1125.

  • 2. Fujun Li, Hirokazu Kitaura, and Haoshen Zhou*, The pursuit of rechargeable solid-state Li-air batteries, Energy Environ. Sci. 2013, 6, 2302.

    Fujun Li, Hirokazu Kitaura, and Haoshen Zhou*, The pursuit of rechargeable solid-state Li-air batteries, Energy Environ. Sci. 2013, 6, 2302.

  • 3. Fujun Li, Dai-Ming Tang, Yong Chen, Dmitri Golberg, Hirokazu Kitaura, Tao Zhang, Atsuo Yamada*, and Haoshen Zhou*, Ru/ITO: a carbon-free cathode for nonaqueous Li-O2 battery, Nano Lett. 2013, 13, 4702.

    Fujun Li, Dai-Ming Tang, Yong Chen, Dmitri Golberg, Hirokazu Kitaura, Tao Zhang, Atsuo Yamada*, Haoshen Zhou*, Ru/ITO: a carbon-free cathode for nonaqueous Li-O2 battery, Nano Lett. 2013, 13, 4702.

  • 4. Fujun Li, Tao Zhang, Yuki Yamada, Atsuo Yamada*, and Haoshen Zhou*, Enhanced cycling performance of Li-O2 batteries by the optimized electrolyte concentration of LiTFSA in glymes, Adv. Energy Mater. 2013, 3, 532.

    Fujun Li, Tao Zhang, Yuki Yamada, Atsuo Yamada*, Haoshen Zhou*, Enhanced cycling performance of Li-O2 batteries by the optimized electrolyte concentration of LiTFSA in glymes, Adv. Energy Mater. 2013, 3, 532.

  • 5. Fujun Li, Ryohji Ohnishi, Yuki Yamada, Jun Kubota, Kazunari Domen, Atsuo Yamada*, and Haoshen Zhou*, Carbon supported TiN nanoparticles: an efficient bifunctional catalyst for non-aqueous Li-O2 batteries, Chem. Commun. 2013, 49, 1175.

    Fujun Li, Ryohji Ohnishi, Yuki Yamada, Jun Kubota, Kazunari Domen, Atsuo Yamada*, Haoshen Zhou*, Carbon supported TiN nanoparticles: an efficient bifunctional catalyst for non-aqueous Li-O2 batteries, Chem. Commun. 2013, 49, 1175.

  • 6. Yong Chen†, Fujun Li†, Dai-Ming Tang, Zelang Jian, Chang Liu, Dmitri Golberg, Atsuo Yamada, and Haoshen Zhou*, Multi-walled carbon nanotube papers as binder-free cathodes for large capacity and reversible non-aqueous Li-O2 batteries, J. Mater. Chem. A. 2013, 1, 13076.

    Yong Chen†, Fujun Li†, Dai-Ming Tang, Zelang Jian, Chang Liu, Dmitri Golberg, Atsuo Yamada, Haoshen Zhou*, Multi-walled carbon nanotube papers as binder-free cathodes for large capacity and reversible non-aqueous Li-O2 batteries, J. Mater. Chem. A. 2013, 1, 13076.

  • 7. Fujun Li, Kwong-Yu Chan*, Hoi Yung, Chunzhen Yang, and Siu-Wa Ting, Uniform dispersion of 1:1 PtRu nanoparticles in ordered mesoporous carbon for improved methanol oxidation, Phys. Chem. Chem. Phys. 2013, 15, 13570.

    Fujun Li, Kwong-Yu Chan*, Hoi Yung, Chunzhen Yang, Siu-Wa Ting, Uniform dispersion of 1:1 PtRu nanoparticles in ordered mesoporous carbon for improved methanol oxidation, Phys. Chem. Chem. Phys. 2013, 15, 13570.

  • 8. Chunzhen Yang, Chi-Ying Vanessa Li, Fujun Li, Kwong-Yu Chan*, Complex impedance with transmission line model and complex capacitance analysis of ion transport and accumulation in hierarchical core-shell porous carbons, J. Electrochem. Soc. 2013, 160, H271.

    Chunzhen Yang, Chi-Ying Vanessa Li, Fujun Li, Kwong-Yu Chan*, Complex impedance with transmission line model and complex capacitance analysis of ion transport and accumulation in hierarchical core-shell porous carbons, J. Electrochem. Soc. 2013, 160, H271.

  • 1. Wei Li, Yang Bai, Fujun Li, Chang Liu, Kwong-Yu Chan*, Xin Feng, and Xiaohua Lu, Core-shell TiO2/C nanofibers as supports for electrocatalytic and synergistic photoelectrocatalytic oxidation of methanol, J. Mater. Chem. 2012, 22, 4025.

    Wei Li, Yang Bai, Fujun Li, Chang Liu, Kwong-Yu Chan*, Xin Feng, Xiaohua Lu, Core-shell TiO2/C nanofibers as supports for electrocatalytic and synergistic photoelectrocatalytic oxidation of methanol, J. Mater. Chem. 2012, 22, 4025.

  • 1. Fujun Li, Madeleine Morris, and Kwong-Yu Chan*, Electrochemical capacitance and ionic transport in the mesoporous shell of a hierarchical porous core–shell carbon structure, J. Mater. Chem. 2011, 21 (24), 8880.

    Fujun Li, Madeleine Morris, Kwong-Yu Chan*, Electrochemical capacitance and ionic transport in the mesoporous shell of a hierarchical porous core–shell carbon structure, J. Mater. Chem. 2011, 21, 8880.

  • 2. Fujun Li, Kwong-Yu Chan*, and Hoi Yung, Carbonization over PFA-protected dispersed platinum: an effective route to synthesize high performance mesoporous-carbon supported Pt electrocatalysts, J. Mater. Chem. 2011, 21, 12139.

    Fujun Li, Kwong-Yu Chan*, Hoi Yung, Carbonization over PFA-protected dispersed platinum: an effective route to synthesize high performance mesoporous-carbon supported Pt electrocatalysts, J. Mater. Chem. 2011, 21, 12139.

  • 1. Fujun Li, Nicole van der Laak, Siu-Wa Ting, and Kwong-Yu Chan*, Varying carbon structures templated from KIT6 for optimum electrochemical capacitance, Electrochim Acta. 2010, 55, 2817.

    Fujun Li, Nicole van der Laak, Siu-Wa Ting, Kwong-Yu Chan*, Varying carbon structures templated from KIT-6 for optimum electrochemical capacitance, Electrochim Acta. 2010, 55, 2817.

  • 2. Linghong Lu, Yudan Zhu, Fujun Li, Wei Zhuang, Kwong-Yu Chan*, and Xiaohua Lu*, Carbon titania mesoporous composite whisker as stable supercapacitor electrode material, J. Mater. Chem. 2010, 20, 7645.

    Linghong Lu, Yudan Zhu, Fujun Li, Wei Zhuang, Kwong-Yu Chan*, Xiaohua Lu*, Carbon titania mesoporous composite whisker as stable supercapacitor electrode material, J. Mater. Chem. 2010, 20, 7645.

  • 1. Fujun Li, Fangyi Cheng, Jifu Shi, Fengshi Cai, Mao Liang, and Jun Chen*, Novel quasi-solid electrolyte for dye-sensitized solar cells, J. Power Sources. 2007, 165, 911.

    Fujun Li, Fangyi Cheng, Jifu Shi, Fengshi Cai, Mao Liang, Jun Chen*, Novel quasi-solid electrolyte for dye-sensitized solar cells, J. Power Sources. 2007, 165, 911.

  • 1. Shichao Wu, Jing Tang, Fujun Li*, Xizheng Liu, Yusuke Yamauchi, Masayoshi Ishida, and Haoshen Zhou*, A synergistic system at cathode in humidified atmosphere by integrating a hydrophobic ionic liquid based electrolyte for lithium-oxygen battery, Adv. Funct. Mater. 2016, 26, 3291.

    Shichao Wu, Jing Tang, Fujun Li*, Xizheng Liu, Yusuke Yamauchi, Masayoshi Ishida, Haoshen Zhou*, A synergistic system at cathode in humidified atmosphere by integrating a hydrophobic ionic liquid based electrolyte for lithium-oxygen battery, Adv. Funct. Mater. 2016, 26, 3291.

  • 2. Pengfei Zhou, Jianbin Wang, Fangyi Cheng, Fujun Li*, and Jun Chen*, A solid lithium superionic conductor Li11AlP2S12 with thio-LISICON analogous structure, Chem. Commun. 2016, 52, 6091.

    Pengfei Zhou, Jianbin Wang, Fangyi Cheng, Fujun Li*, Jun Chen*, A solid lithium superionic conductor Li11AlP2S12 with thio-LISICON analogous structure, Chem. Commun. 2016, 52, 6091.

  • 3. Xiaopeng Han, Fangyi Cheng, Chengcheng Chen, Fujun Li*, and Jun Chen, A Co3O4@MnO2/Ni nanocomposite as a carbon and binder-free cathode for rechargeable Li-O2 batteries, Inorg. Chem. Frontiers. 2016, 3, 866.

    Xiaopeng Han, Fangyi Cheng, Chengcheng Chen, Fujun Li*, Jun Chen, A Co3O4@MnO2/Ni nanocomposite as a carbon and binder-free cathode for rechargeable Li-O2 batteries, Inorg. Chem. Frontiers. 2016, 3, 866.

  • 4. Yanying Lu, Qing Zhao, Ning Zhang, Kaixiang Lei, Fujun Li, and Jun Chen*, Facile Spraying Synthesis and High-Performance Sodium Storage of Mesoporous MoS2/C Microspheres, Adv. Funct. Mater. 2016, 26, 911.

    Yanying Lu, Qing Zhao, Ning Zhang, Kaixiang Lei, Fujun Li, Jun Chen*, Facile Spraying Synthesis and High-Performance Sodium Storage of Mesoporous MoS2/C Microspheres, Adv. Funct. Mater. 2016, 26, 911.

  • 5. Xue Liu, Kai Zhang, Kaixiang Lei, Fujun Li, Zhanliang Tao, and Jun Chen*, Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures, Nano Res. 2016, 9, 198.

    Xue Liu, Kai Zhang, Kaixiang Lei, Fujun Li, Zhanliang Tao, Jun Chen*, Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures, Nano Res. 2016, 9, 198.

  • 6. Xiaorui Fu, Xiaofei Hu, Zhenhua Yan, Kaixiang Lei, Fujun Li, Fangyi Cheng*, and Jun Chen, Template-free synthesis of porous graphitic carbon nitride/carbon composite spheres for electrocatalytic oxygen reduction reaction, Chem. Commun. 2016, 52, 1725.

    Xiaorui Fu, Xiaofei Hu, Zhenhua Yan, Kaixiang Lei, Fujun Li, Fangyi Cheng*, Jun Chen, Template-free synthesis of porous graphitic carbon nitride/carbon composite spheres for electrocatalytic oxygen reduction reaction, Chem. Commun. 2016, 52, 1725.

  • 7. Xianwei Guo, Jiuhui Han, Pan Liu, Luyang Chen, Yoshikazu Ito, Zelang Jian, Tienan Jin, Akihiko Hirata, Fujun Li, Takeshi Fujita, Naoki Asao, Haoshen Zhou, Mingwei Chen*, Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery, Sci. Rep. 2016, 6, 33466.

    Xianwei Guo, Jiuhui Han, Pan Liu, Luyang Chen, Yoshikazu Ito, Zelang Jian, Tienan Jin, Akihiko Hirata, Fujun Li, Takeshi Fujita, Naoki Asao, Haoshen Zhou, Mingwei Chen*, Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery, Sci. Rep. 2016, 6, 33466.

  • 1. Chenchen Wang, Liubin Wang, Fujun Li*, Fangyi Cheng, and Jun Chen, Bulk Bismuth as a High-Capacity and Ultralong Cycle-Life Anode for Sodium-Ion Batteries by Coupling with Glyme-Based Electrolytes, Adv. Mater. 2017, 29, 1702212.

    Chenchen Wang, Liubin Wang, Fujun Li*, Fangyi Cheng, Jun Chen, Bulk Bismuth as a High-Capacity and Ultralong Cycle-Life Anode for Sodium-Ion Batteries by Coupling with Glyme-Based Electrolytes, Adv. Mater. 2017, 29, 1702212.

  • 2. Kaixiang Lei, Fujun Li*, Chaonan Mu, Jianbin Wang, Qing Zhao, Chengcheng Chen, and Jun Chen*, High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes, Energy Environ. Sci. 2017, 10, 552.

    Kaixiang Lei, Fujun Li*, Chaonan Mu, Jianbin Wang, Qing Zhao, Chengcheng Chen, Jun Chen*, High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes, Energy Environ. Sci. 2017, 10, 552.

  • 3. Fujun Li*, Jun Chen, Mechanistic evolution of aprotic lithium-oxygen batteries, Adv. Energy Mater. 2017, 1602934.

    Fujun Li*, Jun Chen, Mechanistic evolution of aprotic lithium-oxygen batteries, Adv. Energy Mater. 2017, 1602934.

  • 4. Liubin Wang, Chenchen Wang, Ning Zhang, Fujun Li*, Fangyi Cheng, and Jun Chen, High anode performance of in situ formed Cu2Sb nanoparticles integrated on Cu foil via replacement reaction for sodium-ion batteries, ACS Energy Lett. 2017, 2, 256.

    Liubin Wang, Chenchen Wang, Ning Zhang, Fujun Li*, Fangyi Cheng, Jun Chen, High anode performance of in situ formed Cu2Sb nanoparticles integrated on Cu foil via replacement reaction for sodium-ion batteries, ACS Energy Lett. 2017, 2, 256.

  • 5. Chaonan Mu, Kaixiang Lei, Haixia Li, Fujun Li*, and Jun Chen, Enhanced Conductivity and Structure Stability of Ti4+ Doped Li3VO4 as Anodes for Lithium-Ion Batteries, J. Phys. Chem. C 2017, 121, 26196.

    Chaonan Mu, Kaixiang Lei, Haixia Li, Fujun Li*, Jun Chen, Enhanced Conductivity and Structure Stability of Ti4+ Doped Li3VO4 as Anodes for Lithium-Ion Batteries, J. Phys. Chem. C 2017, 121, 26196.

  • 6. Ning Zhang, Fangyi Cheng*, Junxiang Liu, Liubin Wang, Xinghui Long, Xiaosong Liu, Fujun Li, and Jun Chen*, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities, Nature Commun. 2017, 8, 405.

    Ning Zhang, Fangyi Cheng*, Junxiang Liu, Liubin Wang, Xinghui Long, Xiaosong Liu, Fujun Li, Jun Chen*, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities, Nature Commun. 2017, 8, 405.

  • 7. Zhiqiang Luo, Luojia Liu, Qing Zhao, Fujun Li, and Jun Chen*, An insoluble benzoquinone-based organic cathode for use in rechargeable lithium-ion batteries, Angew. Chem. Int. Ed. 2017, 56, 12561.

    Zhiqiang Luo, Luojia Liu, Qing Zhao, Fujun Li, Jun Chen*, An insoluble benzoquinone-based organic cathode for use in rechargeable lithium-ion batteries, Angew. Chem. Int. Ed. 2017, 56, 12561.

  • 8. Jiajia Shi, Kaixiang Lei, Weiyi Sun, Fujun Li, Fangyi Cheng*, and Jun Chen, Synthesis of size-controlled CoMn2O4 quantum dots supported on carbon nanotubes for electrocatalytic oxygen reduction/evolution, Nano Res. 2017, 10, 3836.

    Jiajia Shi, Kaixiang Lei, Weiyi Sun, Fujun Li, Fangyi Cheng*, Jun Chen, Synthesis of size-controlled CoMn2O4 quantum dots supported on carbon nanotubes for electrocatalytic oxygen reduction/evolution, Nano Res. 2017, 10, 3836.

  • 1. Zhiqiang Luo, Luojia Liu, Jiaxin Ning, Kaixiang Lei, Yong Lu, Fujun Li*, and Jun Chen, A Microporous Covalent Organic Framework with Abundant Accessible Carbonyls for Lithium-ion Batteries, Angew. Chem. Int. Ed. 2018, 57, 9443 (VIP).

    Zhiqiang Luo, Luojia Liu, Jiaxin Ning, Kaixiang Lei, Yong Lu, Fujun Li*, Jun Chen, A Microporous Covalent Organic Framework with Abundant Accessible Carbonyls for Lithium-ion Batteries, Angew. Chem. Int. Ed. 2018, 57, 9443 (VIP).

  • 2. Kaixiang Lei, Chenchen Wang, Luojia Liu, Yuwen Luo, Chaonan Mu, Fujun Li*, and Jun Chen, A Porous Network of Bismuth Used as Anode Material for High-Energy-Density Potassium-Ion Batteries, Angew. Chem. Int. Ed. 2018, 57, 4687.

    Kaixiang Lei, Chenchen Wang, Luojia Liu, Yuwen Luo, Chaonan Mu, Fujun Li*, Jun Chen, A Porous Network of Bismuth Used as Anode Material for High-Energy-Density Potassium-Ion Batteries, Angew. Chem. Int. Ed. 2018, 57, 4687.

  • 4. Liubin Wang, Youxuan Ni, Kaixiang Lei, Huanhuan Dong, Sen Tian, and Fujun Li*, 3D Porous Tin Enabled by Tuneable Redox Potential as An Advanced Electrode for Sodium‐Ion Battery, ChemSusChem 2018, 11, 3376 (VIP).

    Liubin Wang, Youxuan Ni, Kaixiang Lei, Huanhuan Dong, Sen Tian, Fujun Li*, 3D Porous Tin Enabled by Tuneable Redox Potential as An Advanced Electrode for Sodium‐Ion Battery, ChemSusChem 2018, 11, 3376 (VIP).

  • 5. Yuhou Pei, Chaonan Mu, Haixia Li, Fujun Li*, and Jun Chen, Low-Cost K4Fe(CN)6 as A High-Voltage Cathode for Potassium-Ion Batteries, ChemSusChem 2018, 11, 1285.

    Yuhou Pei, Chaonan Mu, Haixia Li, Fujun Li*, Jun Chen, Low-Cost K4Fe(CN)6 as A High-Voltage Cathode for Potassium-Ion Batteries, ChemSusChem 2018, 11, 1285.

  • 6. Liubin Wang, Chaonan Mu, Haixia Li and Fujun Li*, A dual-function battery for desalination and energy storage, Inorg. Chem. Front. 2018, 5, 2522.

    Liubin Wang, Chaonan Mu, Haixia Li, Fujun Li*, A dual-function battery for desalination and energy storage, Inorg. Chem. Front. 2018, 5, 2522.

  • 7. Liubin Wang, Chenchen Wang, Fujun Li*, Fangyi Cheng and Jun Chen, In situ synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries, Chem. Commun. 2018, 54, 38.

    Liubin Wang, Chenchen Wang, Fujun Li*, Fangyi Cheng and Jun Chen, In situ synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries, Chem. Commun. 2018, 54, 38.

  • 8. Luojia Liu, Licheng Miao, Lin Li, Fujun Li, Yong Lu, Zhenfeng Shang*, and Jun Chen*, Molecular Electrostatic Potential: A New Tool to Predict the Lithiation Process of Organic Battery Materials, J. Phys. Chem. Lett. 2018, 9, 3573.

    Luojia Liu, Licheng Miao, Lin Li, Fujun Li, Yong Lu, Zhenfeng Shang*, Jun Chen*, Molecular Electrostatic Potential: A New Tool to Predict the Lithiation Process of Organic Battery Materials, J. Phys. Chem. Lett. 2018, 9, 3573.

  • 9. Jing Meng, Fangming Liu, Zhenhua Yan, Fangyi Cheng*, Fujun Li, and Jun Chen, Spent alkaline battery-derived manganese oxides as efficient oxygen electrocatalysts for Zn–air batteries, Inorg. Chem. Front. 2018, 5, 2167.

    Jing Meng, Fangming Liu, Zhenhua Yan, Fangyi Cheng*, Fujun Li, Jun Chen, Spent alkaline battery-derived manganese oxides as efficient oxygen electrocatalysts for Zn–air batteries, Inorg. Chem. Front. 2018, 5, 2167.

  • 1. Kaixiang Lei, Zhuo Zhu, Zhengxuan Yin, Pengfei Yan, Fujun Li*, and Jun Chen, Dual Interphase Layers In Situ Formed on a Manganese-Based Oxide Cathode Enable Stable Potassium Storage, Chem 2019, 5, 3320.

    Kaixiang Lei, Zhuo Zhu, Zhengxuan Yin, Pengfei Yan, Fujun Li*, Jun Chen, Dual Interphase Layers In Situ Formed on a Manganese-Based Oxide Cathode Enable Stable Potassium Storage, Chem 2019, 5, 3320.

  • 2. Dongdong Zhu, Qiancheng Zhao, Guilan Fan, Shuo Zhao, Liubin Wang, Fujun Li*, and Jun Chen, Photo‐Induced Oxygen Reduction Reaction Boosts The Output Voltage of Zn‐Air Battery, Angew. Chem. Int. Ed. 2019, 58, 12460.

    Dongdong Zhu, Qiancheng Zhao, Guilan Fan, Shuo Zhao, Liubin Wang, Fujun Li*, Jun Chen, Photo‐Induced Oxygen Reduction Reaction Boosts The Output Voltage of Zn‐Air Battery, Angew. Chem. Int. Ed. 2019, 58, 12460.

  • 3. Zhuo Zhu, Xiaomeng Shi, Guilan Fan, Fujun Li*, and Jun Chen, Photo‐energy conversion and storage in an aprotic Li‐O2 battery, Angew. Chem. Int. Ed. 2019, 58, 19021.

    Zhuo Zhu, Xiaomeng Shi, Guilan Fan, Fujun Li*, Jun Chen, Photo‐energy conversion and storage in an aprotic Li‐O2 battery, Angew. Chem. Int. Ed. 2019, 58, 19021.

  • Chenchen Wang, Dongfeng Du, Mingming Song, Yunhai Wang, Fujun Li*, A High‐Power Na3V2(PO4)3‐Bi Sodium‐Ion Full Battery in a Wide Temperature Range, Adv. Energy Mater. 2019, 9, 1900022.

    Chenchen Wang, Dongfeng Du, Mingming Song, Yunhai Wang, Fujun Li*, A High‐Power Na3V2(PO4)3‐Bi Sodium‐Ion Full Battery in a Wide Temperature Range, Adv. Energy Mater. 2019, 9, 1900022.

  • 5. Yuwen Luo, Luojia Liu, Kaixiang Lei, Jifu Shi*, Gang Xu, Fujun Li*, and Jun Chen, Nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate, Chem. Sci. 2019, 10, 2048.

    Yuwen Luo, Luojia Liu, Kaixiang Lei, Jifu Shi*, Gang Xu, Fujun Li*, Jun Chen, Nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate, Chem. Sci. 2019, 10, 2048.

  • 6. Zhuo Zhu, Xiaomeng Shi, Dongdong Zhu, Liubin Wang, Kaixiang Lei, and Fujun Li*, A Hybrid Na//K+-Containing Electrolyte//O2 Battery with High Rechargeability and Cycle Stability, Research 2019, 2019, 6180615.

    Zhuo Zhu, Xiaomeng Shi, Dongdong Zhu, Liubin Wang, Kaixiang Lei, Fujun Li*, A Hybrid Na//K+-Containing Electrolyte//O2 Battery with High Rechargeability and Cycle Stability, Research 2019, 2019, 6180615.

  • 7. Shuo Zhao, Bin Qin, Kwong-Yu Chan*, Chi-Ying Vanessa Li, and Fujun Li*, Recent development of aprotic Na-O2 batteries, Batteries & Supercaps 2019, 2, 725.

    Shuo Zhao, Bin Qin, Kwong-Yu Chan*, Chi-Ying Vanessa Li, Fujun Li*, Recent development of aprotic Na-O2 batteries, Batteries & Supercaps 2019, 2, 725.

  • 8. Mingming Song, Chenchen Wang, Dongfeng Du, Fujun Li*, and Jun Chen, A high-energy-density sodium-ion full battery based on tin anode, Sci. China Chem. 2019, 62, 616.

    Mingming Song, Chenchen Wang, Dongfeng Du, Fujun Li*, Jun Chen, A high-energy-density sodium-ion full battery based on tin anode, Sci. China Chem. 2019, 62, 616.

  • 9. 刘彦辰, 王晨晨, 李海霞, 李福军*, 钠离子电池无机负极材料的研究进展, Sci. Sin. Chim. 2019, 49, 1351.

    刘彦辰, 王晨晨, 李海霞, 李福军*, 钠离子电池无机负极材料的研究进展, Sci. Sin. Chim. 2019, 49, 1351.

  • 10. Yixin Li, Luojia Liu, Chang Liu, Yong Lu, Ruijuan Shi, Fujun Li, Jun Chen*, Rechargeable Aqueous Polymer-Air Batteries Based on Polyanthraquinone Anode, Chem 2019, 5, 1.

    Yixin Li, Luojia Liu, Chang Liu, Yong Lu, Ruijuan Shi, Fujun Li, Jun Chen*, Rechargeable Aqueous Polymer-Air Batteries Based on Polyanthraquinone Anode, Chem 2019, 5, 1.

  • 1. Liubin Wang, Youxuan Ni, Xuesen Hou, Li Chen, Fujun Li*, and Jun Chen, A two-dimensional metal-organic polymer enabled by robust nickel-nitrogen and hydrogen bonds for exceptional sodium-ion storage, Angew. Chem. Int. Ed. 2020, 59, 22126.

    Liubin Wang, Youxuan Ni, Xuesen Hou, Li Chen, Fujun Li*, Jun Chen, A two-dimensional metal-organic polymer enabled by robust nickel-nitrogen and hydrogen bonds for exceptional sodium-ion storage, Angew. Chem. Int. Ed. 2020, 59, 22126.

  • 2. Dongfeng Du, Shuo Zhao, Zhuo Zhu, Fujun Li*, and Jun Chen, Photo-excited oxygen reduction and oxygen evolution reactions enabling a high-performance Zn-air battery, Angew. Chem. Int. Ed. 2020, 59, 18140.

    Dongfeng Du, Shuo Zhao, Zhuo Zhu, Fujun Li*, Jun Chen, Photo-excited oxygen reduction and oxygen evolution reactions enabling a high-performance Zn-air battery, Angew. Chem. Int. Ed.2020, 59, 18140.

  • 3. Yuwen Luo, Feipeng Zheng*, Luojia Liu, Kaixiang Lei, Xuesen Hou, Gang Xu, Hui Meng, Jifu Shi*, and Fujun Li*, A High-Power Aqueous Zinc–Organic Radical Battery with Tunable Operating Voltage Triggered by Selected Anions, ChemSusChem 2020, 13, 2239.

    Yuwen Luo, Feipeng Zheng*, Luojia Liu, Kaixiang Lei, Xuesen Hou, Gang Xu, Hui Meng, Jifu Shi*, Fujun Li*, A High-Power Aqueous Zinc–Organic Radical Battery with Tunable Operating Voltage Triggered by Selected Anions, ChemSusChem 2020, 13, 2239.

  • 4. Xunzhu Zhou, Yong Lu, Qiu Zhang, Licheng Miao, Kai Zhang, Zhenhua Yan, Fujun Li*, and Jun Chen, Exploring the Interfacial Chemistry between Zinc Anodes and Aqueous Electrolytes via an In Situ Visualized Characterization System, ACS Appl. Mater. Interfaces 2020, 12, 49, 55476.

    Xunzhu Zhou, Yong Lu, Qiu Zhang, Licheng Miao, Kai Zhang, Zhenhua Yan, Fujun Li*, Jun Chen, Exploring the Interfacial Chemistry between Zinc Anodes and Aqueous Electrolytes via an In Situ Visualized Characterization System, ACS Appl. Mater. Interfaces 2020, 12, 49, 55476.

  • 5. Xiaoxiao Bai, Jiarun Geng, Shuo Zhao, Haixia Li and Fujun Li*, Tunable Hollow Pt@Ru Dodecahedra via Galvanic Replacement for Efficient Methanol Oxidation, ACS Appl. Mater. Interfaces 2020, 12, 23046.

    Xiaoxiao Bai, Jiarun Geng, Shuo Zhao, Haixia Li, Fujun Li*, Tunable Hollow Pt@Ru Dodecahedra via Galvanic Replacement for Efficient Methanol Oxidation, ACS Appl. Mater. Interfaces 2020, 12, 23046.

  • 6. Huanhuan Dong, Shuo Zhao, Xuesen Hou, Liubin Wang, Haixia Li, Fujun Li*, Nitroxide radical cathode material with multiple electron reactions, J. Energy Chem. 2021, 58, 110.

    Huanhuan Dong, Shuo Zhao, Xuesen Hou, Liubin Wang, Haixia Li, Fujun Li*, Nitroxide radical cathode material with multiple electron reactions, J. Energy Chem. 2021, 58, 110.

  • 7. Jiarun Geng, Zhuo Zhu, Xiaoxiao Bai, Fujun Li*, and Jun Chen, Hot-Injection Synthesis of PtCu3 Concave Nanocubes with High-Index Facets for Electrocatalytic Oxidation of Methanol and Formic Acid, ACS Appl. Energy Mater. 2020, 3, 1010.

    Jiarun Geng, Zhuo Zhu, Xiaoxiao Bai, Fujun Li*, Jun Chen, Hot-Injection Synthesis of PtCu3 Concave Nanocubes with High-Index Facets for Electrocatalytic Oxidation of Methanol and Formic Acid, ACS Appl. Energy Mater. 2020, 3, 1010.

  • 8. Meng Ren, Hengyi Fang, Chenchen Wang, Haixia Li, and Fujun Li*, Advances on Manganese-Oxide-Based Cathodes for Na-Ion Batteries, Energy & Fuels 2020, 34, 13412.

    Meng Ren, Hengyi Fang, Chenchen Wang, Haixia Li, Fujun Li*, Advances on Manganese-Oxide-Based Cathodes for Na-Ion Batteries, Energy & Fuels 2020, 34, 13412.

  • 9. Shuo Zhao, Lin Li, Fujun Li*, and Shulei Chou*, Recent Progress on Understanding and Constructing Reliable Na Anode for Aprotic Na-O2 Batteries: a mini review, Electrochem. Commun. 2020, 118, 106797.

    Shuo Zhao, Lin Li, Fujun Li*, Shulei Chou*, Recent Progress on Understanding and Constructing Reliable Na Anode for Aprotic Na-O2 Batteries: a mini review, Electrochem. Commun. 2020, 118, 106797.

  • 10. Kaixiang Lei*, Jing Wang, Cong Chen, Siyuan Li, Shiwen Wang*, Shijian Zheng, and Fujun Li*, Recent progresses on alloy-based anodes for potassium-ion batteries, Rare Met. 2020, 39, 989.

    Kaixiang Lei*, Jing Wang, Cong Chen, Siyuan Li, Shiwen Wang*, Shijian Zheng, Fujun Li*, Recent progresses on alloy-based anodes for potassium-ion batteries, Rare Met. 2020, 39, 989.

  • Quan Wu, Yanchen Liu, Zhuo Zhu, Haixia Li, Fujun Li*, 钠离子电池碳负极材料的研究进展

    Quan Wu, Yanchen Liu, Zhuo Zhu, Haixia Li, Fujun Li*, 钠离子电池碳负极材料的研究进展, Sci. Sin. Chim. 2020, 51, 862.

  • 11. Zihan Shen, Mengqiu Cao, Zili Zhang, Jun Pu, Chenglin Zhong, Jiachen Li, Haixia Ma, Fujun Li, Jia Zhu, Feng Pan, and Huigang Zhang* , Efficient Ni2Co4P3 Nanowires Catalysts Enhance Ultrahigh‐Loading Lithium–Sulfur Conversion in a Microreactor‐Like Battery, Adv. Funct. Mater. 2020, 30, 1906661.

    Zihan Shen, Mengqiu Cao, Zili Zhang, Jun Pu, Chenglin Zhong, Jiachen Li, Haixia Ma, Fujun Li, Jia Zhu, Feng Pan, Huigang Zhang* , Efficient Ni2Co4P3 Nanowires Catalysts Enhance Ultrahigh‐Loading Lithium–Sulfur Conversion in a Microreactor‐Like Battery, Adv. Funct. Mater. 2020, 30, 1906661.

  • 12. Junlun Zhu, Wei Nie, Qin Wang, Wei Wen*, Xiuhua Zhang, Fujun Li, and Shengfu Wang* , A competitive self-powered sensing platform based on a visible light assisted zinc–air battery system, Chem. Commun. 2020, 56, 5739.

    Junlun Zhu, Wei Nie, Qin Wang, Wei Wen*, Xiuhua Zhang, Fujun Li, Shengfu Wang* , A competitive self-powered sensing platform based on a visible light assisted zinc–air battery system, Chem. Commun. 2020, 56, 5739.

  • 13. Liubin Wang, Albert A. Voskanyan*, Kwong Yu Chan*, Bin Qin, and Fujun Li, Combustion Synthesized Porous Bismuth/N-Doped Carbon Nanocomposite for Reversible Sodiation in a Sodium-Ion Battery, ACS Appl. Energy Mater. 2020, 3, 565.

    Liubin Wang, Albert A. Voskanyan*, Kwong Yu Chan*, Bin Qin, Fujun Li, Combustion Synthesized Porous Bismuth/N-Doped Carbon Nanocomposite for Reversible Sodiation in a Sodium-Ion Battery, ACS Appl. Energy Mater. 2020, 3, 565.

  • Chenchen Wang, Luojia Liu, Shuo Zhao, Yanchen Liu, Yubo Yang, Haijun Yu, Suwon Lee, Gi-Hyeok Lee, Yong-Mook Kang, Rong Liu, Fujun Li*, and Jun Chen, Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery, Nat. Commun. 2021, 12, 2256.

    Chenchen Wang, Luojia Liu, Shuo Zhao, Yanchen Liu, Yubo Yang, Haijun Yu, Suwon Lee, Gi-Hyeok Lee, Yong-Mook Kang, Rong Liu, Fujun Li*, Jun Chen, Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery, Nat. Commun. 2021, 12, 2256.

  • Qingliang Lv,§ Zhuo Zhu,§ Shuo Zhao, Liubin Wang, Qing Zhao, Fujun Li*, Lynden A. Archer*, and Jun Chen*, Semiconducting Metal−Organic Polymer Nanosheets for a Photoinvolved Li−O2 Battery under Visible Light, J. Am Chem. Soc. 2021, 143, 1941.

    Qingliang Lv,§ Zhuo Zhu,§ Shuo Zhao, Liubin Wang, Qing Zhao, Fujun Li*, Lynden A. Archer*, Jun Chen*, Semiconducting Metal−Organic Polymer Nanosheets for a Photoinvolved Li−O2 Battery under Visible Light, J. Am Chem. Soc. 2021, 143, 1941.

  • Shuo Zhao, Chenchen Wang, Dongfeng Du, Lin Li, Shulei Chou*, Fujun Li*, and Jun Chen, Bifunctional Effects of Cation Additive on Na-O2 Batteries, Angew. Chem. Int. Ed. 2021, 60, 3205.

    Shuo Zhao, Chenchen Wang, Dongfeng Du, Lin Li, Shulei Chou*, Fujun Li*, Jun Chen, Bifunctional Effects of Cation Additive on Na-O2 Batteries, Angew. Chem. Int. Ed. 2021, 60, 3205.

  • Zhiqiang Luo, Silin Zheng, Shuo Zhao, Xin Jiao, Zongshuai Gong, Fengshi Cai, Yueqi Duan, Fujun Li*, and Zhihao Yuan*, High Energy Density Aqueous Zinc-Benzoquinone Battery Enabled by Carbon Cloth with Multiple Anchoring Effects, J. Mater. Chem. A 2021, 9, 6131.

    Zhiqiang Luo, Silin Zheng, Shuo Zhao, Xin Jiao, Zongshuai Gong, Fengshi Cai, Yueqi Duan, Fujun Li*, Zhihao Yuan*, High Energy Density Aqueous Zinc-Benzoquinone Battery Enabled by Carbon Cloth with Multiple Anchoring Effects, J. Mater. Chem. A 2021, 9, 6131.

  • Yanchen Liu, Chenchen Wang, Shuo Zhao, Lin Zhang, Kai Zhang, Fujun Li*, and Jun Chen, Mitigation of Jahn-Teller Distortion and Na+/Vacancy Ordering in Distorted Manganese Oxide Cathode Material by Li Substitution, Chem. Sci. 2021, 12, 1062.

    Yanchen Liu, Chenchen Wang, Shuo Zhao, Lin Zhang, Kai Zhang, Fujun Li*, Jun Chen, Mitigation of Jahn-Teller Distortion and Na+/Vacancy Ordering in Distorted Manganese Oxide Cathode Material by Li Substitution, Chem. Sci. 2021, 12, 1062.

  • Xunzhu Zhou, Qiu Zhang, Zhimeng Hao, Yilin Ma, Oleg A. Drozhzhin, and Fujun Li*

    Xunzhu Zhou, Qiu Zhang, Zhimeng Hao, Yilin Ma, Oleg A. Drozhzhin, Fujun Li*, Unlocking the Allometric Growth and Dissolution of Zn Anodes at Initial Nucleation and Early Stage with Atomic Force Microscopy, ACS Appl. Mater. Interfaces 2021, 13, 53227.

  • Yanchen Liu, Chenchen Wang, Meng Ren, Hengyi Fang, Zhuoliang Jiang, Fujun Li*, Ultralow-strain Ti substituted Mn-vacancy layered oxides with enhanced stability for sodium-ion batteries,

    Yanchen Liu, Chenchen Wang, Meng Ren, Hengyi Fang, Zhuoliang Jiang, Fujun Li*, Ultralow-strain Ti substituted Mn-vacancy layered oxides with enhanced stability for sodium-ion batteries, J. Energy Chem. 2021, 63, 351.

  • Jiarun Geng,§ Zhuo Zhu,§ Youxuan Ni, Fangyi Cheng, Fujun Li*, and Jun Chen, Biaxial strained dual-phase palladium-copper bimetal boosts formic acid electrooxidation, Nano Res. 2021, DOI: 10.1007/s12274-021-3471-3.

    Jiarun Geng,§ Zhuo Zhu,§ Youxuan Ni, Fangyi Cheng, Fujun Li*, Jun Chen, Biaxial strained dual-phase palladium-copper bimetal boosts formic acid electrooxidation, Nano Res. 2022, 15, 280.

  • Lin Zhang, Chenchen Wang, Yanchen Liu, Meng Ren, Juan Du, Aibing Chen*, and Fujun Li*, Suppressing interlayer-gliding and Jahn-Teller effect in P2-type layered manganese oxide cathode via Mo doping for sodium-ion batteries, Chem. Eng. J. 2021, 426, 130813.

    Lin Zhang, Chenchen Wang, Yanchen Liu, Meng Ren, Juan Du, Aibing Chen*, Fujun Li*, Suppressing interlayer-gliding and Jahn-Teller effect in P2-type layered manganese oxide cathode via Mo doping for sodium-ion batteries, Chem. Eng. J. 2021, 426, 130813.

  • Hengyi Fang, Suning Gao, Zhuo Zhu, Meng Ren, Quan Wu, Haixia Li, and Fujun Li*, Recent Progress and Perspectives of Sodium Metal Anodes for Rechargeable Batteries, Chem. Res. Chinese Universities, 2021, 37, 189.

    Hengyi Fang, Suning Gao, Zhuo Zhu, Meng Ren, Quan Wu, Haixia Li, Fujun Li*, Recent Progress and Perspectives of Sodium Metal Anodes for Rechargeable Batteries, Chem. Res. Chinese Universities, 2021, 37, 189.

Members

  • Xiaoyin Zhang (2023)

  • Hang Li (2024)

  • Yuesen Li(2022)

  • Chaonan Mu (2018 M.S.)

  • Yuhou Pei (2018 M.S.)

  • Junjie He (2018 M.S.) Hubei University

  • Kaixiang Lei (2019 Ph.D) 毕业去向:河北工业大学 任教

  • Yuwen Luo (2019 M.S.) Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences

  • Yue Yuan (2019 M.S.)

  • Xiaomeng Shi (2019 M.S.)

  • Mingming Song (2019 M.S.)

  • Liubin Wang (2020 Ph.D) 毕业去向:河北大学 任教

  • Bin Qin (2017) (2020 Ph.D) University of Hong Kong

  • Dongdong Zhu (2020 M.S.)

  • Xiaoxiao Bai (2020 M.S.)

  • Sen Tian (2020 M.S.)

  • Lin Zhang (2018) (2021 M.S.) Hebei University of Science and Technology

  • Zhuo Zhu (2021 Ph.D)

  • Huanhuan Dong (2021 Ph.D)

  • Chenchen Wang (2021 Ph.D)

  • Shuo Zhao (2021 M.S.)

  • Yanchen Liu (2021 M.S.)

  • Dongfeng Du (2022 Ph.D)

  • Xunzu Zhou (2022 Ph.D)

  • Qingliang Lv (2022 Ph.D)

  • Meng Ren(2023 Ph.D)

  • Quan Wu(2023 M.S.)

  • Suning Gao (2023 Postdoc)

  • Zhaohui Liang (2021)

  • Yuzhe Wang (2022)

  • Heng Qu (2022)

  • Jiaman Li(2023)

  • Bin Lian(2023)

  • Jingyu Su(2023)

  • Lang Zhou(2023)

  • Yida Wang(2023)

  • Prof. Fujun Li

    Recipient of National Science Fund for Distinguished Young Scholars (国家杰青, 2023) & Excellent Young Scholars (国家优青, 2018)
    Awards for Young Scholars of Chinese Electrochemical Society (中国电化学青年奖, 2021)
    ACS Energy & Fuels Rising Stars, 2021
    ORCID ID: orcid.org/0000-0002-1298-0267

  • Zhuoliang Jiang (2020)

  • Hengyi Fang (2020)

  • Jiarun Geng (2020)

  • Yihe Guo(2020)

  • Bo Wen (2021)

  • Tong Zhang (2021)

  • Zihao Song (2022)

  • Xiangshuai Wei(2023)

  • Yaohui Huang(2023)

  • Wei Hu(2023)

  • Fei Li(2023)

News

  • ​南开大学李福军课题组招聘电化学方向博士后

    南开大学李福军课题组招聘电化学方向博士后导师简介: 李福军,南开大学化学学院特聘研究员、博士生导师,国家优秀青年基金(2018)、天津市杰出青年基金(2019)、中国电化学青年奖(2021)获得者。分别于南开大学(导师,陈军院士)和香港大学获得硕士和博士学位,先后在东京大学和日本国立产业技术综合研究所(2012/01-2015/08)从事博士后研究,2015年9月加入南开大学先进能源材料化学教育部重点实验室。课题组主要从事金属-空气和钠离子电池关键电池材料及反应机理研究。自课题组成立以来,在PNAS、Nat. Commun.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Adv. Mater.、Chem、Adv. Energy Mater.等国际知名学术期刊上发表论文50余篇。担任Rare Metals和Molecules期刊编委。详情可参见课题组网站:http://lfj-nankai.cn/。由于课题发展需要,现招聘博士后2-3名。拟招聘研究方向: 锂/钠离子电池,金属-空气电池,计算模拟等申报条件 (一)博士后A档(聘期2年) 1. 为国内、外知名高校优秀博士毕业生或博士后人员(博士毕业3年以内),年龄在申报当年原则上不超过32周岁。 2. 以第一作者在南开大学化学学院顶尖学术期刊目录中期刊上发表至少3篇研究论文。(二)博士后B档(聘期3年) 1. 为国内、外知名高校优秀博士毕业生或博士后人员(博士毕业3年以内),年龄在申报当年原则上不超过35周岁。 2. 以第一作者在南开大学化学学院顶尖学术期刊目录中期刊上发表至少1篇学术论文;或者在南开大学化学学院权威学术期刊目录中期刊上发表至少2篇学术论文。(三)博士后C档(聘期2年) 1. 为国内、外知名高校优秀博士毕业生或博士后人员(博士毕业3年以内),申报当年原则上不超过35周岁。 2. 以第一作者在南开大学化学学院权威学术期刊目录中期刊上发表至少1篇学术论文。薪酬待遇和未来发展 1. 博士后A档,年薪税前35万元;博士后B档,年薪税前20万元;博士后C档,年薪税前约13万元。另外,课题组将在上述学校规定待遇基础上额外补助5万元/年+绩效。同时,天津市给予5万元补助。 2. 子女入学(小学)、入托等享受学校事业编制教师待遇。 3. 入站后学校认定中级专业技术职务,出站后学校颁发博士后证书。享受国家和天津市各项博士后政策,包括基金申请、出国项目申报等。 4. 经导师和学校批准,在站期间可带薪作为联合培养博士后去国际顶尖研究机构从事科学研究。 5. 博士后第二聘期结束前,工作业绩突出者可通过岗位评审程序聘为南开大学教师。请有意者将个人简历发至fujunli@nankai.edu.cn

  • 南开大学李福军教授最新Angew:弱溶剂化电解液离子-偶极调控用于超低温钠离子电池

    第一作者:房恒义;黄耀辉(共同一作)通讯作者:李福军教授通讯单位:南开大学Doi:10.1002/2024005391. 全文速览钠离子电池(SIBs)由于钠资源丰富、成本低等优势被认为是大规模储能的潜在候选者。然而,SIBs的宽温域运行受到低温下电解液和不稳定负极的适应性限制。这与Na+脱溶动力学和离子在固体电解质界面(SEI)中的传输密切相关。尽管碳酸酯基电解液已广泛应用于SIBs,但溶剂中羰基与Na+之间显示出强的Na+-偶极相互作用,导致溶剂鞘中溶剂配位增多。这将使得碳酸酯基电解液凝固点升高,进而引起低温下负极倍率性能不佳等问题。醚类电解液因具有比碳酸酯更低的粘度和更好的还原稳定性而受到广泛关注。然而,强烈的Na+-溶剂配位也会导致低温下缓慢的Na+脱溶剂动力学以及富有机组分SEI的形成。不稳定的SEI阻碍了界面离子传输,并持续诱导电解液分解,导致低温下差的循环稳定性。因此,对离子-偶极相互作用和溶剂结构进行适当调节,以改善低温下高性能SIBs的界面动力学,对于提高SIBs的低温电化学性能至关重要。鉴于此,南开大学李福军教授团队设计了一种离子-偶极相互作用减弱的弱溶剂化电解液(WSE),将2-甲基四氢呋喃(2MeTHF)用作共溶剂加入到六氟磷酸钠/四氢呋喃(NaPF6/THF)电解液中,以实现阴离子增强的溶剂化结构。2MeTHF的引入降低了电解液溶剂化结构中阳离子-溶剂的结合强度,减弱了离子-偶极子相互作用,促使更多的阴离子参与到溶剂鞘层中。这有利于阴离子的优先还原分解和富含无机物的SEI的形成,进一步降低了钠离子扩散能垒,增强了负极界面动力学,确保了低温条件下硬碳(HC)负极的稳定运行,相关成果以“Regulating Ion-Dipole Interactions in Weakly Solvating Electrolyte towards Ultra-Low Temperature Sodium-Ion Batteries”为题发表在Angew. Chem. Int. Ed.,第一作者为房恒义和黄耀辉。2. 图文解析图1.(a)N-mixTHF、N-2MeTHF和N-THF的拉曼光谱;(b)不同配位结构的比例;(c)17O NMR光谱;(d)FTIR光谱;(e)DSC曲线;(f)电导率。Ts:盐析温度。图2.(a-c)从分子动力学模拟中得到的电解液在-40°C下的Na+溶剂化构型的径向分布函数(RDF)。(d-f)-40°C下三种电解液的分子动力学模拟快照。浅珊瑚色、青绿色、深蓝色和红色分子分别代表配位的THF、2MeTHF、PF6-和Na+。(g-i)不同电解液的典型溶剂化结构,温度为-40°C。键路径上的蓝色点代表BCP点。(j)三种电解液中Na+-O键的BCP电子密度。(I)N-THF中的O、(Ⅱ)N-mixTHF中的THF的O、(Ⅲ)N-2MeTHF中的O和(Ⅳ)N-mixTHF中的2MeTHF的O。(k)不同电解液在HC负极表面的Na+脱溶剂化示意图。图3. HC负极在(a)N-mixTHF、(b)N-2MeTHF和(c)N-THF中在-40°C下经过三个循环后的高分辨透射电镜(HRTEM)图像,以及(d-f)对应的F 1s的XPS光谱。(g)不同溶剂化结构的HOMO和LUMO能级:(Ⅰ)Na+[PF6-]2[THF]4、(Ⅱ)Na+[PF6-]3[2MeTHF]3、(Ⅲ)Na+[PF6-]4[2MeTHF][THF]3和(Ⅳ)Na+[PF6-]4[2MeTHF]2。(h) Na+-偶极调控对富无机SEI形成机制的影响示意图。图4.(a)Na||Na对称电池在N-mixTHF(193至323 K)、N-2MeTHF(233至323 K)和N-THF(243至323 K)中经过五十次沉积和剥离后的Nyquist图。(b)从Nyquist图中计算出的Na+通过SEI的传输活化能Ea1和(c)Na+去溶剂化能Ea2。(d)在25°C和-40°C下,三种电解液中的tNa+。(e)在-40°C下,HC负极在三种电解液中的GITT曲线。图5.(a)HC在N-mixTHF、N-2MeTHF和N-THF中在25°C下的首次充放电曲线,电流密度为50 mA g-1以及(b)倍率性能。(c)HC在-40°C下的首次充放电曲线,电流密度为50 mA g-1,以及(d)HC在不同温度下(-20°C以上时电流密度为100 mA g-1,-40°C和60°C时电流密度为50 mA g-1)在N-mixTHF中的长循环性能。(e)25°C(200 mA g-1)和-40°C(50 mA g-1)时全电池的循环性能。3. 总结与展望本文开发了一种弱溶剂化电解液,2MeTHF的引入削弱了电解液中的离子-偶极相互作用,实现了超低温下HC负极的稳定钠存储。减少阳离子-溶剂配位将导致第一溶剂化鞘层中存在更多阴离子,这使得N-mixTHF具有低至-83.3°C的凝固点。分子动力学模拟表明,N-mixTHF在低温下保持了阴离子增强的溶剂化结构。同时,N-mixTHF低的去溶剂化能有利于PF6-在HC负极上的分解,生成的富含NaF的SEI加快了N-mixTHF的界面动力学。这使得Na||HC半电池在-40°C和-60°C时以50 mA g-1的电流密度运行时可提供高达243.2和205.4 mAh g-1的可逆容量。与磷酸钒钠配对的全电池在-40°C下运行250圈容量保持率约为100%。这项工作为超低温钠离子电池电解液设计提供了新见解。

  • Congratulations on acceptance of Hengyi and Yaohui's paper on Angew. Chem. Int. Ed. !

    Congratulations on acceptance of Hengyi and Yaohui's paper on Angew. Chem. Int. Ed. !

  • Congratulations on acceptance of Yaohui's paper on J. Mater. Chem. A !

    Congratulations on acceptance of Yaohui's paper on J. Mater. Chem. A !

  • 南开大学李福军、温州大学侴术雷&李林PNAS:强配位阴离子助力高性能低温钠离子电池

    【研究背景】得益于钠高的地壳丰度(2.3 wt%)、较高的理论容量(1165 mAh g-1)及较低的氧化还原电位(-2.71 V),钠离子电池(SIBs)被认为是后锂时代具发展前景的一种电网级大规模储能技术。然而,SIBs在低温下,特别是在-20°C以下,容量低衰减快,其性能提升仍然是极端环境部署的迫切需求。大体上,影响钠离子电池低温性能的因素主要包含以下四方面:(1)电解液内部的离子传输;(2)电极-电解液界面的去溶剂化过程;(3)电极-电解液界面内部的离子传输;(4)电极材料内部的电子和离子传输。值得注意的是,界面Na+去溶剂化过程对低温更敏感,主导电荷转移阻抗,是影响电池性能的限速步。电解液的去溶剂化能取决于Na+-阴离子和Na+-溶剂分子的竞争配位,因此调控电解液的溶剂化化学是加速去溶剂化过程、提升SIBs低温性能的关键。虽然盐浓度和弱配位溶剂对内溶剂化构型的调控是行之有效的,阴离子对溶剂化行为的作用同样不可忽视。深入解析Na+,阴离子和溶剂分子的溶剂化化学对低温SIBs性能的提升至关重要。 【工作介绍】近期,南开大学李福军教授联合温州大学侴术雷教授、李林特聘教授,在PNAS期刊上发表题为“Regulation of Anion-Na+ Coordination Chemistry in Electrolyte Solvates for Low Temperature Sodium-Ion Batteries”的研究性论文。文中选用高电子亲和能力的阴离子三氟乙酸根(TFA-)调控1.0 M NaPF6-G2电解液中的溶剂化学。该全氟阴离子的DN值高达34.0 kcal mol-1,其强配位作用使其全部参与内溶剂化鞘层,实现常规浓度下更多阴离子占据的溶剂化构型。与1.0 M NaPF6-G2电解液相比,增强的TFA-和降低的G2配位的溶剂化化学加速了界面Na+去溶剂化行为,呈现出较低的去溶剂化能(40至-20 ℃:3.49 vs. 4.16 kJ mol-1;-20至-60 ℃:16.55 vs. 24.74 kJ mol-1)。可诱导均匀稳定的Na沉积,实现25 ℃下500圈99.9%的超高超稳定的库仑效率。同时,Na||Na3V2(PO4)3电池在-40 ℃下循环呈现出60.2%的室温容量和100圈后99.2%的高容量保持率。这项工作为溶剂化化学调控助力高性能低温钠离子电池发展提供了新的见解。 【内容表述】电解液的去溶剂化能与Na+-溶剂和Na+-阴离子之间的相互作用密切相关,Gutmann给体数(DN)是描述溶剂或阴离子溶剂化能力的参数之一。高DN值的溶剂具有较强的溶解钠盐能力,优先占据内溶剂化鞘层,但去溶剂化能高,界面动力学缓慢。高DN值的阴离子同样可优先占据内溶剂化鞘层,降低溶剂的配位数,从而显示出加速的Na+去溶剂化能。因此,本文选用超高DN值的三氟乙酸根(TFA-)阴离子调控G2电解液的溶剂化构型,其DN值高达34.0 kcal mol-1。图1A、B显示,阴离子的DN值越高,其与Na+的相互作用越强,表明TFA-具有较强的配位能力。这导致NaTFA在G2溶剂中解离程度低,离子电导率低,20 °C下1.0 M NaTFA-G2电解液的仅为0.20 mS cm-2。因此,0.1 M的NaTFA作为电解质添加剂被引入1.0 M NaPF6-G2电解质中,其具有中等的离子电导率(6.87 mS cm-2)和超高的库伦效率(99.9%)。 对拉曼光谱进行分峰拟合处理,自由的G2分子在804.7、824.2和850.9 cm-1处表现出三个特征振动峰,分别标记为F1、F2和F3。839.4、861.1和870.3 cm-1处的特征峰归属于配位G2,标记为S1、S2和S3。1.0 M NaPF6-G2(不含NaTFA的电解液)中配位G2的比例为47.7%,继续添加0.1 M NaPF6后该比例升至54.4%,这归因于较高浓度电解液体系中由于溶剂不足导致的溶剂配位数增大。然而在1.0 M NaPF6-G2电解液中添加0.1 M NaTFA后配位G2的比例大幅降低至41.9%。自由G2(F1, F2, F3)和配位G2(S1, S2, S3)的比例也同样呈现出相似的规律,强调了TFA-阴离子较强的配位能力。根据分子动力学模拟(MD),所有TFA-阴离子以接触离子对的形式(CIP, TFA-中一个O原子与一个Na+配位)占据内溶剂化鞘层的理论配位数为0.18,而在含有NaTFA的电解液中TFA-的配位数为0.22,证明聚集体结构(AGGs, TFA-中一个O原子与两个或多个Na+配位)的存在。相应的,在TFA-存在下,G2的配位数从5.09降低到4.78,配位的PF6-从1.30增加到1.33。高配位的TFA-使更多的PF6-阴离子和更少的G2分子占据Na+的内溶剂化鞘,有利于构建增强的Na+-阴离子配位,即Na(G2)4.78(PF6)1.33(TFA)0.22。图1. Na+溶剂化化学。(A)常见阴离子的DN值;(B)Na+-阴离子的结合能;(C-E)各电解液Raman谱图及自由G2、配位G2的占比;(F)23Na NMR谱图及(G)各组分配位数。 扫描电镜(SEM)图像显示,NaTFA的引入诱导生成均匀致密光滑的Na沉积,有效抑制裂纹的生成。原子力显微镜(AFM)的高度和模量图像所示,添加NaTFA的电解液中可以观察到一个平坦光滑的表面,粗糙度(Rq)为32.5 nm,远低于不含NaTFA电解液中的118.1 nm,机械强度也从0.86 GPa大幅提高到5.20 GPa。以上表明阴离子增强的溶剂化结构有利于均匀致密的Na沉积,并形成坚固的SEI层。 不含NaTFA的电解液中,尤其是300圈循环后,库伦效率的波动极大,对应电解液体系的持续性分解。在含NaTFA的电解液中,可在500次循环中实现99.9%的超高、超稳定的库伦效率。平均电压极化从46.2 mV降低到24.1 mV,表明界面动力学增强。此外,TFA-的引入可实现更小的尖端过电位、平台过电位、成核过电位及更低的初始Na损失,对应增强的Na沉积/剥离的稳定性和可逆性。同时,TFA-的优先还原有助于抑制PF6-的分解,呈现出较大的交换电流密度,加速界面动力学性能。图2. Na+沉积/脱出行为。(A-B)沉积Na的SEM图像;(C-D)沉积Na的杨氏模量,插图为三维的AFM图像;(E-F)库伦效率;(G)过电位及首圈Na损失的雷达图;(H)LSV及(I)Tafel曲线。 含有NaTFA的电解液,在Na||Na3V2(PO4)3 (NVP)体系中呈现出更高的容量,该优势在大电流密度下更为显著。在2.0和3.0 A g-1时的容量为94.5和84.6 mAh g-1,远高于不含NaTFA体系中的81.9和66.7 mAh g-1,表明含有NaTFA的电解液在快充领域的潜力。随后选取MD中最具代表性的四种溶剂化构性,Na(G2)3、Na(G2)2(PF6)、Na(G2)(PF6)2和Na(G2)(PF6)(TFA)计算TFA-引入对氧化还原和去溶剂化能的影响。当TFA-占据内溶剂化鞘层时,HOMO能级大大增加,表明其在NVP表面优先分解生成富氟的界面层。界面去溶剂化能的顺序为:Na(G2)3 > Na(G2)2(PF6) > Na(G2)(PF6)2 > Na(G2)(PF6)(TFA),表明在TFA-阴离子的参与下,去溶剂化过程加快。同时,组装半充电状态的对称Na1.5V2(PO4)3电池测试变温阻抗,根据阿伦尼乌斯方程计算界面处的去溶剂化能。NaTFA的引入在较宽温度范围内均展现出较低的去溶剂化能,3.49 vs. 4.16 kJ mol-1 (40至-20 ℃)和16.55 vs. 24.74 kJ mol-1 (-20至-60 ℃)。在-20 ℃时,两种电解液中都观察到一个转折点,这归因于溶剂化结构的转变。图3. 界面动力学。(A-C)Na||NVP电池的长循环、倍率及相应的充放电曲线;最具代表性溶剂化结构的(D)HOMO/LUMO能级,(E)静电势密度分布及(F)去溶剂化能计算;(G)变温对称Na1.5V2(PO4)3||Na1.5V2(PO4)3电池的阻抗及(H-I)不同温度范围内的去溶剂化能。 因此,通过MD模拟和Raman光谱探索25 ℃和-40 ℃下温度依赖的溶剂化构型。在含有NaTFA的电解液中,室温下Na+内溶剂化构型内存在大量G2分子,其展现出较强的Na+-OG2强度;而在低温下,PF6-阴离子大量占据内溶剂化鞘层,Na-FPF6离子对强度相对较高。G2和PF6-的配位数在冷却过程中呈现相反的趋势,配位G2从4.79下降到3.46,配位PF6-从1.33上升到4.34。对于强配位TFA-阴离子,随着温度的降低其配位数略有下降,从0.22到0.19,但仍大于理论值0.18,即所有TFA-阴离子均以接触离子对和聚集体的形式占据内溶剂化鞘,即在-40 ℃下,TFA-阴离子也具有很强的配位能力。含TFA-阴离子AGGs结构的比例下降可能是由于低温下离子活度减弱和热力学速率减慢所致。此外,NaTFA的加入增强了25和-40 ℃下的PF6-的配位程度,在较宽的温度范围内形成了更多的含有PF6-的CIP和AGGs结构。低温拉曼光谱中,740.2 cm-1处PF6-的特征峰强度增大,对应于低温下增强的PF6-配位。 采用深度剖析XPS对界面SEI膜的化学成分进行了研究。NaTFA加入的界面膜呈现出更高含量的无机组分,如NaF (F1s光谱中683.2 eV)和Na2O (O1s光谱中529.5 eV)等,对应于TFA-的分解。Ar+溅射120 s时NaF和Na2O的强度高于溅射0 s,表明SEI内层中无机物质富集,而有机物质主要分布在SEI外层。在有无NaTFA的电解液体系中,低温下均展现出更高的磷化物含量,对应于低温下更多PF6-阴离子占据Na+内溶剂化鞘。不含NaTFA的电解液体系中,F元素含量升高,这对应于低温下增强的PF6-配位及其分解。含有NaTFA的电解液体系中,F元素源于PF6-和TFA-阴离子的分解,但其含量呈现出明显的降低,说明低温下TFA-的分解是F元素的主要来源且TFA-配位程度降低。在两种电解液体系中相反的P:F比值表明,低温下占据Na+内溶剂化鞘层的PF6-阴离子较多,TFA-阴离子较少,这与变温MD模拟及拉曼所验证的溶剂化结构一致。图4. 变温溶剂化构型。25 ℃及-40 ℃下(A-B)径向分布函数、溶剂化快照及(C)不同组分的配位数变化;(D)变温Raman谱图;(E-F)变温刻蚀XPS的F、P含量及F:P比。 室温下,两种电解液在Na||NVP电池中展现出相近的容量,随着温度降低至零度以下,含有NaTFA的电解液体系在充放电容量方面展现出明显的优势,且具有降低的极化电压。在-40和25 ℃时,含有NaTFA的电解液体系的容量分别为53.4和105.6 mAh g-1,高于不含NaTFA的电解液中的40.7和90.3 mAh g-1。含有NaTFA的电解液体系展现出优异的低温倍率性能,这归因于其加快的Na+去溶剂化能。低温长循环过程中,Na||NVP电池展现出60.2%的室温容量及100圈后99.2%的容量保持率,远高于不含NaTFA体系中的50.8%和91.3%。低温下含有NaTFA的电池体系展现出增大的电化学窗口,均匀致密的钠沉积。并通过测试变温Na||Na和NVP||NVP对称电池的电化学阻抗,证实在冷却过程中阻抗增量主要来自于金属钠侧。该工作突出强配位TFA-阴离子对电极-电解液界面化学行为的影响,调控更多阴离子参与内溶剂化鞘层,降低去溶剂化能,提升界面动力学,促进钠离子电池的快充及低温性能。图5. 电化学性能。(A-B)变温容量及充放电曲线;-40 ℃下Na||NVP电池的(C)倍率及(D)循环曲线;(E)-40 ℃电化学窗口;(F)界面去溶剂化行为图示。 【结论】本工作引入具有高DN值、强配位阴离子TFA-, 调控生成阴离子增强的溶剂化构型,在较宽的温度范围内增大阴离子配位,降低溶剂配位,有效加速了Na+的去溶剂化过程。并详细解析了温度对溶剂化构型配位的作用规律。这项工作强调了阴离子增强的溶剂化配位,为快充、低温钠离子电池的溶剂化学调控提供了新的见解。 Xunzhu Zhou, Yaohui Huang, Bo Wen, Zhuo Yang, Zhiqiang Hao, Lin Li*, Shu-Lei Chou*, Fujun Li*. Regulation of Anion-Na+ Coordination Chemistry in Electrolyte Solvates for Low Temperature Sodium-Ion Batteries, PNAS, 2024.https://doi.org/10.1073/pnas.2316914121

  • 李福军教授Angew:“晶格负膨胀”实现长循环钠离子电池

    【研究背景】基于Ni两电子反应(Ni2+/Ni4+)的O3型层状正极材料具有较高的理论比容量,受到研究人员的广泛关注。然而,在脱出和嵌入大尺寸Na+时会伴随着剧烈的相变,导致层间距的急剧收缩和膨胀,最终演变为严重的局部应变、裂纹和容量衰减。即使将电压范围缩短至2.0-4.0V,由O3-P3相变导致的晶格膨胀程度依然较大,限制了材料的电化学性能。 【工作简介】近日,南开大学李福军教授等报道了正极材料Na0.9Ni0.32Zn0.08Fe0.1Mn0.3Ti0.2O2(ZT-NFM)在脱钠过程(2.0-4.0V)中的晶格负膨胀行为。Zn的掺入可诱导P/O共生相的生成,引起高电压下的晶格收缩,减少脱钠过程的晶格膨胀程度。Ti的掺入可抑制[Ni3+O6]的姜泰勒扭曲,消除Na+/空穴重排。这些使正极材料具有优异的循环稳定性(800次循环后容量保持率为84.2%),并结合化学预钠的方式,成功组装了不同Ah级的软包电池,在3600次循环后容量保持率可达到93%,展现了巨大的产业化应用前景。相关工作以“Negative Lattice Expansion in an O3-Type Transition-Metal Oxide Cathode for Highly Stable Sodium-Ion Batteries”为题发表在国际顶级期刊Angew. Chem. Int. Ed.上,南开大学博士研究生张彤为本文第一作者。 【内容表述】亮点:1)通过特定元素掺杂改变充放电过程中的相变路径来实现晶格负膨胀,提高正极材料的循环稳定性。2)优化软包电池的制备工艺,实现长循环稳定的Ah级钠离子电池的成功组装。 图1.(a)精修的XRD。(b)HADDF-STEM图像。(c)结构示意图。(d)在Ni K边的XANES谱。(e)Ni K边EXAFS与R空间的拟合。(f)材料的TM八面体位点的COHP分析。 作者使用XRD精修、扫描透射电子显微镜(STEM)结合高角度环形暗场(HAADF)揭示了O3-Na0.9Ni0.32Zn0.08Fe0.1Mn0.3Ti0.2O2的原子结构。与初始样(NFM)相比,Zn和Ti的协同掺入导致d(O−Na−O) and Na-O 键长的增加 ,这有利于Na+的扩散。ZT-NFM的Ni K边的吸收边右移证实了Ni的氧化态增加,通过对EXAFS的拟合表明Ni和O之间的相互作用增强,这也与-COHP的计算结果一致。 图2.(a)材料的原位XRD。(b)对比样品的原位XRD。(c, d, e)材料在初始状态,充电至3.6V,充电至4.0V的HAADF STEM图像和强度分布。(f, g)材料和对比样晶格参数的演变。 作者通过原位XRD监测结构演变,如图2所示。ZT-NFM与NFM初始充电时均发生O3-P3相变。当进一步充电到3.6 V时,ZT-NFM与NFM的相变行为开始出现不同。ZT-NFM的(003)峰缓慢向右移动,这表明P3相通过固溶体脱钠逐渐转变为O/P共生的OP2相。作者进一步使用HAADF STEM去直接观测脱钠过程的结构变化,证实了O3↔P3↔OP2的相变路径。相反,NFM一直保持(003)峰的左移,维持P3结构。在随后的放电过程中,ZT-NFM的所有衍射峰均恢复到初始状态,表明从O3↔P3↔OP2的相变路径是高度可逆的。此外,作者还对比了单独掺杂样品的相变行为,证实了是Zn诱导了P3-OP2的相变。 作者对ZT-NFM及NFM的原位XRD进行了精修拟合,分析了脱钠过程中的晶格参数及层间距的变化。结果表明ZT-NFM的c-lattice的变化程度要小于NFM,并展现出先膨胀后收缩的行为。进一步地分析材料在C轴方向的层间距变化,结果表明ZT-NFM在O3-Na0.9-ZT-NFM→P3-Na0.75-ZT-NFM→P3-Na0.51-ZT-NFM→OP2-Na0.38-ZT-NFM阶段的层间距的膨胀率分别为+2.7%, +1.3%和-1.6%,在充电末端由P3-OP2相变引起了负的晶格膨胀,总的膨胀率为+2.4%。相反,NFM层间距的总膨胀率为+5.2%,对应着O3-Na0.9-NFM→O‘3-Na0.86-NFM→P3-Na0.77-NFM→P3-Na0.35-NFM相变的膨胀率为+0.5%, +2.3%和+2.4%。这说明P3-OP2相变可以引起负的晶格膨胀,减少沿着C轴方向的层间距变化,有利于缓解脱嵌钠时的应力。图3.(a)材料在脱钠过程的结构示意图。(b, c, d)材料在不同充电状态下的DOS。(e)TM-O的键长。(f)材料在充电过程中O-O键长及斥力变化的示意图。 作者利用DFT理论计算去研究掺杂对电子结构及相变行为的影响。从DOS上可以看出Zn掺杂后存在非键合的O(2p)且增加了周围O的电子密度,进而造成相邻层间O2--O2-斥力的增大,最终诱导P3-OP2相变的发生。同样的,计算结果表明TiO6八面体具有较好的柔性,可以抑制[Ni3+O6]的姜泰勒扭曲,消除了O’3中间相的生成。图4.(a, b)Ni 和Fe在K边的XANES谱。(c, d)Ni和Fe的EXAFS谱与拟合。 作者为了阐明ZT-NFM的电荷补偿机制,在不同状态下进行了非原位XAS光谱。在初始充电至4.0 V期间,Ni K-边的吸收边右移并接近LiNiO2,表明Ni2+被氧化为Ni4+。Fe K-边的吸收边也逐渐右移,表明Fe3+被氧化为Fe4+。这些可以通过图4c,d所示的第一个Ni–O及Fe-O配位层中缩短的原子间距离证实。图5.(a)材料在2.0和4.0 V之间在5mA g–1下的充电/放电曲线。(b)0.1mV s–1下,第二圈循环的CV曲线。(c)在不同倍率下的倍率性能。(d)软包电池中5mA g–1下的充电/放电曲线。(e)软包电池在100mA g–1时的循环性能。 作者首先在以钠为负极的半电池中评价了ZT-NFM的电化学性能。如图5a和b所示,ZT-NFM的充放电曲线平滑,容量最高达到144.9 mAh g-1,且放电平台得到了一定程度的提升。ZT-NFM在800次长循环后容量保持率为84.2%,远高于NFM的50%。为进一步评价正极材料的电化学性能,作者成功组装了ZT-NFM/HC的软包电池。HC负极首先通过一种化学预钠的方式进行补钠,这样能够弥补首圈活性Na的损失,且利于HC界面的稳定性。软包电池的能量密度可以达到133Wh kg-1,在100 mA g-1电流密度下循环3600圈容量保持率可达到93%,展现了巨大的产业化应用前景。图6.(a, b)材料和对比样在循环400圈后的HAADF STEM图像。(c,d)材料在体相的HAADF STEM图像及应力模拟。(e,f)对比样在体相的HAADF STEM图像及应力模拟。(g, h)材料在表面裂纹的HAADF STEM图像及应力模拟。 最后,作者研究了材料在长循环后的结构变化。ZT-NFM在400圈循环后表面出现了微小的裂纹,但在体相结构中没有明显的结构变化,且应力分布较为均匀,这与晶格参数变化的结果相一致,即负膨胀减少了在C轴方向的变化,抑制了局部应力的集中。相反,NFM在表面及体相均出现明显的裂纹,部分裂纹从表面延伸并贯穿整个结构。在材料体相结构中,出现了晶格失配,且存在应力集中的现象。在表面结构,有明显的过渡金属溶出现象,并在表面发生结构重拍,生成了岩盐相。 【总结与展望】本研究制备了O3-Na0.9Ni0.32Zn0.08Fe0.1Mn0.3Ti0.2O2作为钠离子电池的正极材料,突出了相变路径对稳定性的影响。Zn的掺杂可以提高相邻层间的斥力,诱导O/P混相的生成,抑制晶格及层间距的变化。Ti的掺杂抑制了Ni3+的姜泰勒效应,消除了O‘3中间相,因此钠离子电池能在2.0-4.0V电压范围内稳定循环。该研究为高性能、长循环钠离子电池层状氧化物正极的设计提供了新思路。 【文献详情】Tong Zhang, Meng Ren, Yaohui Huang, Fei Li, Weibo Hua, Sylvio Indris, Fujun Li, Angew. Chem. Int. Ed.2024, e202316949. Doi: 10.1002/anie.202316949https://onlinelibrary.wiley.com/doi/10.1002/anie.202316949

  • Advanced Materials:钠离子电池超稳定层状氧化物阴极材料的配位化学调控

    层状过渡金属(TM)氧化物阴极在钠离子电池(SIB)中受到越来越多的关注。然而,它们在实际应用中受到了姜-泰勒(Jahn-Teller)畸变和不可逆阳离子迁移的困扰,导致严重的电压衰减和结构不稳定。 南开大学李福军团队报告了 O3-Na0.898K0.058Ni0.396Fe0.098Mn0.396Ti0.092O2 (KT-NFM),通过刚性 KO6 柱和柔性 TiO6 八面体的多位取代,将其作为一种超稳定阴极材料。K 柱诱导收缩的 TMO2 板及其强大的库仑斥力,从而抑制了 Ni/Fe 迁移;Ti 的加入加强了 Ni(3deg*)-O(2p) 的杂化,从而缓解了不希望发生的 O3-O'3 相变。这些因素使 Ni2+↔Ni3.20+ 和 Fe3+↔Fe3.69+ 的可逆氧化还原达到 135.6 mAh g-1,并在 KT-NFM||| 硬碳的软包电池中实现了超稳定循环,2000 次循环后容量保持率大于 90%。这将为钠离子电池及其它超稳定层状阴极材料的设计提供启示。该成果以《Regulation of Coordination Chemistry for Ultra-Stable LayeredOxide Cathode Materials of Sodium-lon Batteries》为题发表在《Adv. Mater.》,第一作者是Gao Suning。 【引言】 钠因其丰富的资源和全球可用性而比锂具有显著优势,从而确保了钠离子电池(SIB)在大规模储能设备中的经济可持续性。钠基层状过渡金属氧化物 NaxTMO2 因其高比容量和可扩展的合成工艺而前景广阔。其晶格由过渡金属氧化物板(TMO2)和氧化钠(NaO2)板交替构建而成,其中 TMO2 板决定了化学/电化学性质,而 NaO2 板则提供了 Na+ 的插入位点。同时,由于 Na-Na 的排斥作用,大尺寸 Na+ 在 NaO2 板中产生 Na+/ 空隙重排,导致扩散动力学缓慢。这就需要用适当的成分和局部结构来调节 TMO2 板坯和 NaO2 板坯,以获得高性能的 SIB。 然而,由于高自旋 Ni3+(t2g3-eg1)的单电子填充 eg(dx2-y2,dz2)轨道导致 NiO6 八面体的 Jahn-Teller 畸变,不可避免地导致 TMO2 板滑行、各向异性应变传播和化学机械退化加剧。另一方面,层状过渡金属氧化物在高电压下普遍存在阳离子迁移现象,这会促使尖晶石样相的累积形成,并在循环时产生严重的电压衰减。有人尝试用 Li+ 或/和 Co3+ 取代阳离子,以调节它们从 TM 层迁移到 Na 层,并阻止 Fe 和 Ni 离子的迁移,从而提高循环稳定性。然而,它们会导致 TM 层出现 TM 空位和错位,从而导致动力学势垒增加和结构不稳定。 【工作要点】 在本研究中,作者通过在刚性 KO6 柱和柔性 TiO6 八面体各自的 NaO2 层和 TMO2 层中加入 K 和 Ti,获得了超稳定的 O3-Na0.898K0.058Ni0.396Fe0.098Mn0.396Ti0.092O2。通过操作表征和密度泛函理论计算,系统地研究了它们在调节电化学性能方面的作用。Ti 的加入可增强 Ni(3deg*)-O(2p)杂化,消除不希望发生的 O3-O'3 相变;而铆接在 NaO2 板中的 K 则可通过其相邻两个 TMO2 板之间的强大库仑斥力抑制 Ni/Fe 迁移。在 KT-NFM|||Hard carbon(KT-NFM|||HC)软包电池中,经过 2000 次循环后,可获得 138.6 mAh g-1 的可逆容量和大于 90% 的长使用寿命。 图 1:a) KT-NFM 的 XRD 图谱和里特维尔德精修及其插图晶体结构;b) STEM-HAADF 和 c) STEM-ABF 图像;d) KT-NFM 的强度线剖面图;e) SAED 图谱。f) KT-NFM 和 KMO 的固态 39K NMR 图谱。g) NFM 和 KT-NFM 在镍 K 边的 XANES 图谱。h) KT-NFM 的镍 K 边 EXAFS 和拟合以及 i) DOS。 图 2.a) KT-NFM 和 b) NFM 的初始电荷曲线、原位 XRD 等值线图以及相应的晶格参数变化。c) KT-NFM 中具有代表性的 Ni12、Fe2 和 Mn2 八面体位点的 COHP 分析。图 3.a)带电 KT-NFM 表面和 b)带电 KT-NFM 体积区域的 STEM-HAADF 图像;c)带电 KT-NFM 的强度线剖面图和 d)带电 KT-NFM 的 FFT 图形;e)带电 KT-NFM 的 STEM-HAADF 图像;f,g)e 中虚线矩形区域的强度线剖面图;h,i)e 中 I 区和 II 区的 FFT 图形;j,k)抑制阳离子迁移的拟议机制。 图 4. a) KT-NFM (102) 平面上电荷密度的等值线图。b) KT-NFM 中 Na、K、Ni、Fe、Mn、Ti 和 O 的 MSD 随时间的变化。c) NFM 和 (d) KTNFM 中 3a-8a-3b 位点的 TM 迁移路径。(e)NFM 和 KT-NFM 优化结构中 Ni 迁移的相对位点能。图 5. a) 0.1 mV s-1 下第二个循环的 CV 曲线 b) 5 mA g-1 下 2.0 至 4.0 V 之间的充放电曲线 c) KT-NFM 和 NFM 在不同速率下的速率能力 d) 200 mA g-1 下 KTNFM||HC 和 NFM||HC 软包电池的循环性能 e) KT-NFM||HC 软包电池在选定循环中的充放电曲线。 图 6.a,b,c) 循环 NFM 和 d,e,f) 循环 KT-NFM 的 SEM 图像和 FIB-SEM 图像。 【结论】 总之,研究人员采用多位点置换策略合成了超稳定的 KT-NFM,在 Na 层和 TMO2 层中分别含有 K 和 Ti。研究表明,K 柱的作用是加固 TMO2 板并缓解其滑动。夹有 K 的相邻 TMO2 板之间的强大库仑斥力抑制了 Ni 或 Fe 的迁移。钛的加入有利于 Ni(3deg*)-O(2p)杂化,减轻了 NiO6 的 Jahn-Teller 畸变,从而消除了 O3-O'3 的劣相变。两者的结合使 KT-NFM 结构稳定,不会出现裂缝和 TM 迁移和损失。实验证明,该电池可提供 135.6 Wh kg-1 的高能量密度和速率能力,并显示出超稳定的循环寿命,2000 次循环后容量保持率大于 90%,KT-NFM||HC 软包电池的电压衰减可忽略不计。调节配位化学的多位点置换策略将为 SIB 的反应机理和材料设计提供新的见解。

  • Congratulations on acceptance of Suning's paper on Adv. Mater.!

    Congratulations on acceptance of Suning's paper on Adv. Mater.!

  • Congratulations on acceptance of Zhang Tong's paper on Angew. Chem. Int. Ed. !

    Congratulations on acceptance of Zhang Tong's paper on Angew. Chem. Int. Ed. !

  • Congratulations on acceptance of Xunzhu's paper on PNAS !

    Congratulations on acceptance of Xunzhu's paper on PNAS !

  • 南开大学李福军教授团队Angew:锂氧气电池中超氧根歧化的新途径

    ·文章信息·第一作者:蒋卓良通讯作者:李福军通讯单位:南开大学·导读·基于氧还原(ORR)和氧析出(OER)反应的非质子型锂氧气电池具有高达3500 Wh kg-1的理论能量密度,受到研究人员的广泛关注。锂氧气电池在放电和充电过程均会产生O2-中间体,这会导致放电/充电动力学缓慢、过电位增大以及循环性能下降。高效正极催化剂可以通过调控活性位点与O2-之间的吸附作用来加快其还原/氧化的动力学,但是非均相ORR、OER反应固有的高能垒和高界面阻抗会导致其本征的动力学缓慢。高DN数的溶剂可以提高可溶O2-的浓度,从而将部分非均相反应转化为均相的O2-歧化反应,然而这个过程的动力学十分缓慢,并且伴随着高浓度O2-带来的副反应。提高O2-歧化反应的动力学,并且抑制相关副反应对锂氧气电池的进一步发展至关重要。·成果简介·近日,南开大学化学学院李福军课题组使用了三联吡啶钌阳离子(RB)作为锂氧气电池的溶液催化剂,改变了O2-在放电和充电过程中的歧化反应途径和动力学。RB可以捕获O2-二聚体并促进它们的分子内电荷转移,将歧化反应的能垒从7.70 kcal mol-1降低到0.70 kcal mol-1。这加快了放电反应和充电反应的动力学,降低了充放电过电位,同时减轻了O2-和1O2相关的副反应。研究成果发表在国际著名期刊Angew. Chem. Int. Ed.上,题为 “New Reaction Pathway of Superoxide Disproportionation Induced by a Soluble Catalyst in Li-O2 Batteries” (DOI: 10.1002/anie.202315314)。·关键创新·通过改变O2-歧化反应的途径来加快歧化速率,从而促进放电与充电过程的动力学。·核心内容解读·图1 RB加快O2-歧化反应的速率。作者首先使用原位紫外可见光谱(in-situ UV-Vis)、超快电喷雾电离质谱(ESI-MS)和DFT理论计算证明了RB阳离子与O2-会结合产生一个相对稳定的{RB···O2-}中间体。然后作者使用了在线差分质谱(ODMS)研究不同RB浓度对O2-歧化速率的影响。在没有加入RB时,O2-的歧化反应是一个二级反应。这个二级反应在O2-浓度高于3.0 mM时,由于动力学较快,会表现出伪一级反应的行为。而加入RB之后,O2-的歧化反应完全转变成一级反应,并且其速率常数比没有RB的对照组增加了2~4倍。图2 RB促进O2-歧化的反应机理。理论计算表明,RB诱导的歧化反应主要存在四个步骤:1)RB吸附第一个O2-,同时大量电荷从O2-转移至RB,形成RB1;2)RB1吸附一个溶剂化的LiO2,此时LiO2上的电荷进一步转移到RB上,形成RB2;3)RB2吸附第二个锂离子,大量电荷从RB转移回O2-二聚体,变成RB3;4)RB3快速解离成氧气和RB4,然后RB4中的过氧物种沉淀到电极上。由于RB促进了O2-二聚体的分子内电荷转移,所以反应能垒下降,歧化动力学加快。歧化反应的反应级数与热力学决速步有关。对于RB诱导的歧化反应,决速步是O2-与RB结合产生RB1的过程(O2-+RB→RB1),根据O2-的化学计量数可以很容易判断,这个反应对于O2-是一级反应,因此RB介导的O2-歧化反应是一级反应。对于没有RB参与的歧化反应,O2-二聚体的解离需要跨越最高的能垒,所以决速步是(LiO2)2→Li2O2+O2。考虑到(LiO2)2的形成(2LiO2→(LiO2)2)是一个快速平衡的反应,他们整体对于O2-是二级反应。理论计算结果和OMES结果一致。图3 RB促进放电过程。为了验证歧化反应对放电过程的影响,作者使用了纯碳纸作为正极极片。纯碳纸具有非常小的比表面积,所以放电过程主要发生的是O2-歧化反应,而不是O2-还原反应。结果表明添加RB后,锂氧气电池的放电容量比没添加RB的对照组高4-10倍。相应地,添加RB后放电产物颗粒的尺寸也比没有添加RB的对照组大。 图4 RB对放电、充电过程的影响。作者随后使用负载了Super P(SP)或者RuO2催化剂的极片组装锂氧气电池,研究电池在放电、充电过程发生的反应。电子顺磁共振(EPR)结果显示电解液中O2-的浓度在使用了RB催化剂后迅速下降;在使用RuO2催化剂后,1O2在充电过程的产生也得到抑制。这是由于RB可以加快O2-歧化速率,降低溶液中的O2-的浓度,减少O2-对DMSO溶液的攻击;RuO2可以降低充电电位,减少1O2的产生,从而抑制1O2和高电压带来的副反应。当RB和RuO2共同作用于锂氧气电池时,电解液在循环50圈之后没有副产物产生,并且DEMS结果证明电池具有非常好的可逆性。图5锂氧气电池的电化学性能。由于溶液催化剂RB与固体催化剂RuO2的协同作用,锂氧气电池的放电和充电动力学都得到提高。并且O2-和1O2相关的副反应都被抑制,电池的循环稳定性得到极大改善。在500 mA g-1电流密度下,锂氧气电池能在较低的过电位下稳定循环超过230圈。而对于不添加RB的锂氧气电池,循环50圈之后电池极化逐渐加大,循环105圈之后放电电位衰减到2.2 V 以下。·总结与展望·本工作证明RB阳离子是一种有效的溶液催化剂,能够加快O2-的歧化动力学,从而促进锂氧气电池的放电和充电过程。当RB与RuO2催化剂搭配使用时,充电电压显著降低,O2-和1O2引发的副反应得到抑制,因此锂氧气电池能在较低过电压下稳定循环超过230圈。这项工作突显了O2-歧化在锂氧气电池放电、充电反应中的关键作用,并提供了一种加快锂氧气电池反应动力学的新策略。·文章链接·Zhuoliang Jiang, Bo Wen, Yaohui Huang, Yihe Guo, Yuzhe Wang, Fujun Li*, New Reaction Pathway of Superoxide Disproportionation Induced by a Soluble Catalyst in Li-O2 Batteries, Angew. Chem. Int. Ed. 2023, DOI: 10.1002/anie.202315314.

  • Congratulations on acceptance of Zhuoliang's paper on Angew. Chem. Int. Ed. !

    Congratulations on acceptance of Zhuoliang's paper on Angew. Chem. Int. Ed. !

  • Congratulations on acceptance of Zhaohui's paper on Inorg. Chem. Front. !

    Congratulations on acceptance of Zhaohui's paper on Inorg. Chem. Front. !

  • Congratulations on acceptance of Wu Quan's paper on Batteries & Supercaps !

    Congratulations on acceptance of Wu Quan's paper on Batteries & Supercaps !

  • 南开化学李福军教授团队 Angew:阴离子增强的溶剂化结构助力锂氧气电池金属负极高稳定性

    文章信息第一作者:黄耀辉 通讯作者:李福军 通讯单位:南开大学 研究背景锂氧气电池作为下一代新型储能技术,具有超高的理论能量密度(~3600 Wh kg-1),有望应用于电动汽车等需要大规模储能的领域。它的性能取决于氧气阴极、锂金属阳极和电解质之间的协同作用。尽管在设计高效的催化剂以实现快速正极氧化还原动力学方面取得了进展,但目前仍缺乏能够与锂金属表现出良好稳定性的电解质。四乙二醇二甲醚(G4)因其与大多数正极催化剂具有很高的兼容性被广泛应用为锂氧气电池的电解质溶剂。然而,不可逆的锂沉积/剥离导致了负极低库伦效率和循环不稳定性。同时,锂金属与醚类溶剂反应形成脆弱的固体电解质界面膜(SEI),引起了不均匀的锂沉积和不可控的枝晶生长,这带来了严重的安全隐患。 负极和电解液的稳定性与Li+溶剂化结构和电解质/电极界面密切相关。在传统的电解液中,由于Li+和溶剂相互作用强烈,溶剂分子主导了锂离子溶剂化结构。由此产生的富含有机物的SEI通常会导致高的Li+扩散能垒和负极界面上不均匀的锂离子通量,从而加剧锂枝晶的生长。而含有阴离子的Li+溶剂化结构有利于负极的界面化学反应,从而产生化学均匀且机械稳定的富含无机物的SEI,这有利于提高Li+的传输动力学,并实现均匀的锂沉积。因此,设计阴离子主导的溶剂化结构、构建富含无机物的SEI和研究电极-溶液的界面反应机制,对于稳定锂氧气电池的金属负极具有重要意义。 成果简介近日,南开大学李福军教授团队,近日在Angew. Chem. Int. Ed.期刊上发表题为“Solvation Structure with Enhanced Anionic Coordination for Stable Anodes in Lithium-Oxygen Batteries”的研究性论文。本文研究了基于G4的三氟乙酸锂(LiTFA)和双(三氟甲磺酰基)亚胺锂(LiTFSI)的双盐电解液体系,成功构建了阴离子增强的溶剂化结构,并在锂金属负极表面原位构了富含无机物SEI膜。在LiTFA的存在下, Li+与G4的螯合作用被削弱而与阴离子的配位作用加强。 Li+与TF的强相互作用降低了 Li+去溶剂化能,加速了负极界面反应动力学。在沉积过程中TFA独特的负极迁移行为,加强阴离子界面分解的同时也抑制了溶剂的分解。富含无机物的SEI降低了 Li+的扩散能垒,有效抑制了枝晶生长,促进了锂的均匀沉积。这些优点大幅提升了负极库伦效率,使得锂氧气电池具有优异的长循环稳定性。这项工作为调控溶剂化结构助力高能量密度锂金属电池发展提供了新的见解。 图文解读 图1. (a) 不同溶剂结合能;(b) 阴离子/盐的DN数与结合能;(c) 不同电解液拉曼光谱;(d) 不同电解液锂核磁谱;(e) (f) 不同电解液的RDF计算结果。 G4分子由于其众多的氧配位原子,容易与Li+产生较强的螯合作用,形成溶剂占主导的溶剂化构型,在单盐电解液体系LiTFSI/G4(SE)中,Li-Cu半电池的库伦效率仅小于25%。为了减弱溶剂阳离子之间的强相互作用,研究选取了具有高DN数,和与Li+高亲和力的TFA-阴离子,与G4溶剂分子竞争性地与阳离子配位。在使用LiTFA/G4(SE2)电解液体系后,库伦效率大幅度增加到80%以上,说明阴离子增强的溶剂化配位构型有助于提升库伦效率。然而,LiTFA由于较低的解离度,导致溶液整体电导率偏低限制了电池性能。因此,LiTFSI和LiTFA构成的双盐电解液体系(BSE),既保证了溶液离子电导率,又保证阴离子增强的溶剂化构型,库伦效率得到进一步提高。随着LiTFA的加入,拉曼光谱发现Li+-G4结构峰的减弱,以及核磁中Li正向的化学位移,均可以说明溶剂化结构内,Li+与溶剂作用减弱而增强了与阴离子的相互作用。径向分布函数计算进一步说明,锂离子同时与TFA-和TFSI-阴离子配位,但TFA-的配位数大于TFSI-,证实了Li+与-TFA-更强的结合。 图2. (a) 溶剂化构型分子结构;(b) 代表溶剂化结构的静电势计算;(c) G4在含不同阴离子配位溶剂化结构中的结合能;(d) 不同电解液的MSD计算。 通过密度泛函理论从分子层面上深入研究微观溶剂化构型,在加入LiTFA后,Li+-O(阴离子)键长减小而Li+-O(溶剂)键长增加,说明了Li+-溶剂和Li+-阴离子此消彼长的相互作用变化,呼应了与前面拉曼、核磁的测试结果。通过静电势(ESP)计算表明,较小体积的TFA-阴离子相比于TFSI-负电荷更加集中。因此,Li+更易被TFA-阴离子吸引,从而减少与G4分子的结合强度。进一步研究计算了在含不同阴离子配位的溶剂化构型内G4分子与Li+的结合能。可以看出随着TFA阴离子数目的上升,G4结合能下降,说明增强的阴离子配位诱导了Li+-溶剂结合强度的下降。MSD说明,Li+因为受到G4分子束缚的减弱迁移能力得到提升,这有助于减小界面反应极化提升电池倍率性能。 图3. (a-c) 分子动力学模拟快照;(d)(e) SE与BSE中SEI成分的O1s和F1s XPS谱;(f) 不同电解液的LSV测试;(g) 不同溶液的去溶剂化活化能测试;(h) SE和BSE成核过电位曲线 ;(i) SE和BSE的Tafel曲线。 外加电场的经典分子动力学模拟研究了BSE中阴离子增强的溶剂化结构如何影响负极界面反应。模拟开始Li+同时与TFA-和TFSI-两个阴离子配位,随着模拟时间的进行,可以发现TFSI离子解离出溶剂化结构并且朝着电场的反方向迁移。然而,TFA离子由于和Li+之间较强的作用力,展现出不同的迁移方向,可以与Li+顺着电场方向迁移到负极的表面。这有助于进一步阴离子在表面的分解,从而产生富含无机物的SEI。XPS测试证实了模拟结果:相比于SE,BSE中循环生成的SEI富含Li2O和LiF等无机物。同时LSV测试展示了BSE中阴离子的还原峰增强而溶剂峰减弱,证明了溶剂的副反应分解得到有效抑制。变温阻抗测试进一步说明,BSE内增强的阴离子溶剂化结构降低了脱溶剂化能垒。降低的成核过电位与增加的交换电流密度均说明了BSE中LiTFA的加入加快了负极界面的反应动力学。 图4. (a-d) SE和BSE中锂沉积形貌的俯视和侧视图;(e) 使用SE和BSE的Li-Li对称电池长循环电化学性能测试;(f) (g) SE和BSE中使用有限锂负极的锂氧气电池测试。 锂负极形貌的俯视和侧视图展现了BSE中锂沉积的均匀和致密,而SE中不仅有枝晶生长还有死锂生成,整个沉积多孔不致密,这样增大的表面积容易与电解液发生更多副反应。Li-Li对称电池展现了不同电解液中负极锂沉积/剥离的长循环稳定性,可以看出由于负极稳定的SEI和更快的界面动力学,BSE对称电池的极化远低于SE,且循环寿命达到1000h。为了显著展现不可逆锂沉积/剥离对负极的影响,研究使用了沉积锂的铜箔作为有限锂源应用在锂氧气电池中。SE极低的库伦效率导致锂负极被快速消耗,因此仅仅在10次循环后锂氧气电池呈现出容量衰减。而随着LiTFA的加入BSE库伦效率提高负极副反应减少,电池的循环性能因此被大幅度提升到120次以上。 通讯作者简介李福军,南开大学化学学院教授、博士生导师、国家优秀青年基金(2018)、天津市杰出青年基金(2019)、中国电化学青年奖(2021)获得者。担任Rare Metals和Molecules期刊编委。课题组的主要研究方向为金属-空气和钠离子电池。近五年来,以通讯作者在PNAS (2)、Angew. Chem. Int. Ed. (12)、J. Am. Chem. Soc. (4)、Nat. Commun.、Adv. Mater.、Chem. Soc. Rev.等国际知名期刊上发表论文80余篇。 文章链接Yaohui Huang, Jiarun Geng, Zhuoliang Jiang, Meng Ren, Bo Wen, Jun Chen, Fujun Li*, Solvation Structure with Enhanced Anionic Coordination for Stable Anodes in Lithium-Oxygen Batteries, Angew. Chem. Int. Ed. 2023, DOI: 10.1002/anie.202306236. https://doi.org/10.1002/anie.202306236